dataset.py 39.7 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tianshuo78520a 已提交
14
"""This is definition of dataset class, which is high performance IO."""
D
dongdaxiang 已提交
15 16 17 18

from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import core
19
from ..utils import deprecated
D
dongdaxiang 已提交
20
__all__ = ['DatasetFactory', 'InMemoryDataset', 'QueueDataset']
D
dongdaxiang 已提交
21 22 23


class DatasetFactory(object):
24 25
    """
    DatasetFactory is a factory which create dataset by its name,
H
hutuxian 已提交
26
    you can create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
27 28 29
    the default is "QueueDataset".

    Example:
30 31 32 33 34
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")

35
    """
D
dongdaxiang 已提交
36

D
dongdaxiang 已提交
37
    def __init__(self):
38
        """ Init. """
D
dongdaxiang 已提交
39 40
        pass

41
    def create_dataset(self, datafeed_class="QueueDataset"):
42
        """
H
hutuxian 已提交
43
        Create "QueueDataset" or "InMemoryDataset", or "FileInstantDataset",
44
        the default is "QueueDataset".
D
dongdaxiang 已提交
45

46 47 48 49
        Args:
            datafeed_class(str): datafeed class name, QueueDataset or InMemoryDataset.
                                 Default is QueueDataset.

D
dongdaxiang 已提交
50
        Examples:
51 52 53 54 55
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()

56
        """
D
dongdaxiang 已提交
57 58
        try:
            dataset = globals()[datafeed_class]()
59
            return dataset
D
dongdaxiang 已提交
60 61 62 63 64 65
        except:
            raise ValueError("datafeed class %s does not exist" %
                             datafeed_class)


class DatasetBase(object):
66
    """ Base dataset class. """
D
dongdaxiang 已提交
67

D
dongdaxiang 已提交
68
    def __init__(self):
69
        """ Init. """
D
dongdaxiang 已提交
70 71 72 73
        # define class name here
        # to decide whether we need create in memory instance
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        self.proto_desc.pipe_command = "cat"
X
xujiaqi01 已提交
74
        self.dataset = core.Dataset("MultiSlotDataset")
75
        self.thread_num = 1
J
jiaqi 已提交
76
        self.filelist = []
77
        self.use_ps_gpu = False
78
        self.psgpu = None
D
dongdaxiang 已提交
79 80 81 82 83 84

    def set_pipe_command(self, pipe_command):
        """
        Set pipe command of current dataset
        A pipe command is a UNIX pipeline command that can be used only

85 86 87 88 89 90
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pipe_command("python my_script.py")
91 92

        Args:
93
            pipe_command(str): pipe command
94

D
dongdaxiang 已提交
95 96 97
        """
        self.proto_desc.pipe_command = pipe_command

T
Thunderbrook 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def set_so_parser_name(self, so_parser_name):
        """
        Set so parser name of current dataset

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_so_parser_name("./abc.so")

        Args:
            pipe_command(str): pipe command

        """
        self.proto_desc.so_parser_name = so_parser_name

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    def set_rank_offset(self, rank_offset):
        """
        Set rank_offset for merge_pv. It set the message of Pv.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_rank_offset("rank_offset")

        Args:
            rank_offset(str): rank_offset's name

        """
        self.proto_desc.rank_offset = rank_offset

132 133 134 135 136 137 138 139
    def set_fea_eval(self, record_candidate_size, fea_eval=True):
        """
        set fea eval mode for slots shuffle to debug the importance level of
        slots(features), fea_eval need to be set True for slots shuffle.
        
        Args:
            record_candidate_size(int): size of instances candidate to shuffle 
                                        one slot
T
tianshuo78520a 已提交
140
            fea_eval(bool): whether enable fea eval mode to enable slots shuffle.
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                            default is True.
            
        Examples:
            .. code-block:: python

            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_fea_eval(1000000, True)

        """
        if fea_eval:
            self.dataset.set_fea_eval(fea_eval, record_candidate_size)
        self.fea_eval = fea_eval

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        if self.fea_eval:
            slots_set = set(slots)
            self.dataset.slots_shuffle(slots_set)

D
dongdaxiang 已提交
177 178 179 180
    def set_batch_size(self, batch_size):
        """
        Set batch size. Will be effective during training

181 182 183 184 185 186
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_batch_size(128)
D
dongdaxiang 已提交
187 188

        Args:
189
            batch_size(int): batch size
D
dongdaxiang 已提交
190 191 192 193

        """
        self.proto_desc.batch_size = batch_size

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
    def set_pv_batch_size(self, pv_batch_size):
        """
        Set pv batch size. It will be effective during enable_pv_merge

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_pv_batch(128)
        Args:
            pv_batch_size(int): pv batch size

        """
        self.proto_desc.pv_batch_size = pv_batch_size

210
    def set_thread(self, thread_num):
211 212 213
        """
        Set thread num, it is the num of readers.

214 215 216 217 218 219
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
               dataset.set_thread(12)
220 221

        Args:
222
            thread_num(int): thread num
223
        """
224
        self.dataset.set_thread_num(thread_num)
225
        self.thread_num = thread_num
226 227

    def set_filelist(self, filelist):
228 229 230
        """
        Set file list in current worker.

231 232 233 234 235 236
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_filelist(['a.txt', 'b.txt'])
237 238

        Args:
239
            filelist(list): file list
240
        """
241
        self.dataset.set_filelist(filelist)
J
jiaqi 已提交
242
        self.filelist = filelist
243

244 245 246
    def set_input_type(self, input_type):
        self.proto_desc.input_type = input_type

D
dongdaxiang 已提交
247
    def set_use_var(self, var_list):
248 249 250
        """
        Set Variables which you will use.

251 252 253 254 255 256
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_use_var([data, label])
257 258

        Args:
259
            var_list(list): variable list
260
        """
261
        multi_slot = self.proto_desc.multi_slot_desc
D
dongdaxiang 已提交
262
        for var in var_list:
263
            slot_var = multi_slot.slots.add()
D
dongdaxiang 已提交
264 265 266 267
            slot_var.is_used = True
            slot_var.name = var.name
            if var.lod_level == 0:
                slot_var.is_dense = True
268
                slot_var.shape.extend(var.shape)
269
            if var.dtype == core.VarDesc.VarType.FP32:
D
dongdaxiang 已提交
270
                slot_var.type = "float"
271
            elif var.dtype == core.VarDesc.VarType.INT64:
D
dongdaxiang 已提交
272
                slot_var.type = "uint64"
B
Baibaifan 已提交
273 274
            elif var.dtype == core.VarDesc.VarType.INT32:
                slot_var.type = "uint32"
D
dongdaxiang 已提交
275 276
            else:
                raise ValueError(
B
Baibaifan 已提交
277
                    "Currently, fluid.dataset only supports dtype=float32, dtype=int32 and dtype=int64"
D
dongdaxiang 已提交
278 279
                )

280
    def set_hdfs_config(self, fs_name, fs_ugi):
281 282 283
        """
        Set hdfs config: fs name ad ugi

284 285 286 287 288 289
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_hdfs_config("my_fs_name", "my_fs_ugi")
290 291

        Args:
292 293
            fs_name(str): fs name
            fs_ugi(str): fs ugi
294
        """
295 296
        self.dataset.set_hdfs_config(fs_name, fs_ugi)

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    def set_download_cmd(self, download_cmd):
        """
        Set customized download cmd: download_cmd

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              dataset.set_download_cmd("./read_from_afs")

        Args:
            download_cmd(str): customized download command
        """
        self.dataset.set_download_cmd(download_cmd)

313
    def _prepare_to_run(self):
314 315 316 317
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
J
jiaqi 已提交
318 319 320
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        self.dataset.set_thread_num(self.thread_num)
321
        self.dataset.set_data_feed_desc(self.desc())
J
jiaqi 已提交
322 323
        self.dataset.create_readers()

324 325 326 327 328 329 330 331
    def _set_use_ps_gpu(self, use_ps_gpu):
        """
        set use_ps_gpu flag

        Args:
            use_ps_gpu: bool
        """
        self.use_ps_gpu = use_ps_gpu
332 333 334 335 336
        # if not defined heterps with paddle, users will not use psgpu
        if not core._is_compiled_with_heterps():
            self.use_ps_gpu = 0
        elif self.use_ps_gpu:
            self.psgpu = core.PSGPU()
337

J
jiaqi 已提交
338 339
    def _finish_to_run(self):
        self.dataset.destroy_readers()
340

D
dongdaxiang 已提交
341 342 343 344
    def desc(self):
        """
        Returns a protobuf message for this DataFeedDesc

345 346 347 348 349 350
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset()
              print(dataset.desc())
D
dongdaxiang 已提交
351 352 353 354 355 356

        Returns:
            A string message
        """
        return text_format.MessageToString(self.proto_desc)

357 358 359 360 361 362
    def _dynamic_adjust_before_train(self, thread_num):
        pass

    def _dynamic_adjust_after_train(self):
        pass

D
dongdaxiang 已提交
363 364

class InMemoryDataset(DatasetBase):
365 366
    """
    InMemoryDataset, it will load data into memory
D
dongdaxiang 已提交
367 368
    and shuffle data before training.
    This class should be created by DatasetFactory
369 370

    Example:
371
        dataset = paddle.fluid.DatasetFactory().create_dataset("InMemoryDataset")
372
    """
D
dongdaxiang 已提交
373

374
    @deprecated(since="2.0.0", update_to="paddle.distributed.InMemoryDataset")
D
dongdaxiang 已提交
375
    def __init__(self):
376
        """ Init. """
377 378
        super(InMemoryDataset, self).__init__()
        self.proto_desc.name = "MultiSlotInMemoryDataFeed"
379
        self.fleet_send_batch_size = None
380
        self.is_user_set_queue_num = False
J
jiaqi 已提交
381
        self.queue_num = None
382 383
        self.parse_ins_id = False
        self.parse_content = False
384 385 386
        self.parse_logkey = False
        self.merge_by_sid = True
        self.enable_pv_merge = False
387
        self.merge_by_lineid = False
388
        self.fleet_send_sleep_seconds = None
389
        self.trainer_num = -1
J
jiaqi 已提交
390

391 392 393
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_feed_type")
394 395 396 397 398
    def set_feed_type(self, data_feed_type):
        """
        Set data_feed_desc
        """
        self.proto_desc.name = data_feed_type
Y
yaoxuefeng 已提交
399 400
        if (self.proto_desc.name == "SlotRecordInMemoryDataFeed"):
            self.dataset = core.Dataset("SlotRecordDataset")
401

402 403 404
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._prepare_to_run")
J
jiaqi 已提交
405 406 407 408 409
    def _prepare_to_run(self):
        """
        Set data_feed_desc before load or shuffle,
        user no need to call this function.
        """
410
        if self.thread_num <= 0:
411
            self.thread_num = 1
J
jiaqi 已提交
412 413 414 415
        self.dataset.set_thread_num(self.thread_num)
        if self.queue_num is None:
            self.queue_num = self.thread_num
        self.dataset.set_queue_num(self.queue_num)
416 417
        self.dataset.set_parse_ins_id(self.parse_ins_id)
        self.dataset.set_parse_content(self.parse_content)
418 419 420
        self.dataset.set_parse_logkey(self.parse_logkey)
        self.dataset.set_merge_by_sid(self.merge_by_sid)
        self.dataset.set_enable_pv_merge(self.enable_pv_merge)
J
jiaqi 已提交
421 422 423 424
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_channel()
        self.dataset.create_readers()

425 426 427 428
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_before_train"
    )
429 430
    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
431 432 433 434
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(thread_num, False)
435 436
        self.dataset.dynamic_adjust_readers_num(thread_num)

437 438 439 440
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._dynamic_adjust_after_train"
    )
441 442
    def _dynamic_adjust_after_train(self):
        if not self.is_user_set_queue_num:
443 444 445 446
            if self.use_ps_gpu:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, True)
            else:
                self.dataset.dynamic_adjust_channel_num(self.thread_num, False)
447 448
        self.dataset.dynamic_adjust_readers_num(self.thread_num)

449 450 451
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_queue_num")
J
jiaqi 已提交
452 453 454 455 456
    def set_queue_num(self, queue_num):
        """
        Set Dataset output queue num, training threads get data from queues

        Args:
457
            queue_num(int): dataset output queue num
J
jiaqi 已提交
458 459 460 461 462 463 464 465 466

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_queue_num(12)

        """
467
        self.is_user_set_queue_num = True
J
jiaqi 已提交
468 469
        self.queue_num = queue_num

470 471 472
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_ins_id")
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
    def set_parse_ins_id(self, parse_ins_id):
        """
        Set id Dataset need to parse insid

        Args:
            parse_ins_id(bool): if parse ins_id or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_ins_id(True)

        """
        self.parse_ins_id = parse_ins_id

490 491 492
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_parse_content")
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
    def set_parse_content(self, parse_content):
        """
        Set if Dataset need to parse content

        Args:
            parse_content(bool): if parse content or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_content(True)

        """
        self.parse_content = parse_content

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    def set_parse_logkey(self, parse_logkey):
        """
        Set if Dataset need to parse logkey

        Args:
            parse_content(bool): if parse logkey or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_parse_logkey(True)

        """
        self.parse_logkey = parse_logkey

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    def _set_trainer_num(self, trainer_num):
        """
        Set trainer num

        Args:
            trainer_num(int): trainer num

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset._set_trainer_num(1)

        """
        self.trainer_num = trainer_num

544 545 546
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_sid")
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
    def set_merge_by_sid(self, merge_by_sid):
        """
        Set if Dataset need to merge sid. If not, one ins means one Pv.

        Args:
            merge_by_sid(bool): if merge sid or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_sid(True)

        """
        self.merge_by_sid = merge_by_sid

    def set_enable_pv_merge(self, enable_pv_merge):
        """
        Set if Dataset need to merge pv.

        Args:
            enable_pv_merge(bool): if enable_pv_merge or not

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_enable_pv_merge(True)

        """
        self.enable_pv_merge = enable_pv_merge

    def preprocess_instance(self):
        """
        Merge pv instance and convey it from input_channel to input_pv_channel. 
        It will be effective when enable_pv_merge_ is True.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()

        """
        self.dataset.preprocess_instance()

    def set_current_phase(self, current_phase):
        """
        Set current phase in train. It is useful for untest.
        current_phase : 1 for join, 0 for update.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.set_current_phase(1)

        """
        self.dataset.set_current_phase(current_phase)

    def postprocess_instance(self):
        """
        Divide pv instance and convey it to input_channel.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.preprocess_instance()
              exe.train_from_dataset(dataset)
              dataset.postprocess_instance()

        """
        self.dataset.postprocess_instance()

636 637 638 639
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_batch_size"
    )
640
    def set_fleet_send_batch_size(self, fleet_send_batch_size=1024):
J
jiaqi 已提交
641
        """
642
        Set fleet send batch size, default is 1024
J
jiaqi 已提交
643 644 645 646 647 648 649 650 651 652 653 654 655

        Args:
            fleet_send_batch_size(int): fleet send batch size

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_batch_size(800)

        """
        self.fleet_send_batch_size = fleet_send_batch_size
656

657 658 659 660
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_fleet_send_sleep_seconds"
    )
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
    def set_fleet_send_sleep_seconds(self, fleet_send_sleep_seconds=0):
        """
        Set fleet send sleep time, default is 0

        Args:
            fleet_send_sleep_seconds(int): fleet send sleep time

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_fleet_send_sleep_seconds(2)

        """
        self.fleet_send_sleep_seconds = fleet_send_sleep_seconds

678 679 680
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_merge_by_lineid")
681
    def set_merge_by_lineid(self, merge_size=2):
682 683 684 685 686
        """
        Set merge by line id, instances of same line id will be merged after
        shuffle, you should parse line id in data generator.

        Args:
687
            merge_size(int): ins size to merge. default is 2.
688 689 690 691 692 693 694 695 696

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              dataset.set_merge_by_lineid()

        """
697
        self.dataset.set_merge_by_lineid(merge_size)
698
        self.merge_by_lineid = True
699
        self.parse_ins_id = True
700

701 702 703 704
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._set_generate_unique_feasigns"
    )
705 706 707 708 709
    def set_generate_unique_feasigns(self, generate_uni_feasigns, shard_num):
        self.dataset.set_generate_unique_feasigns(generate_uni_feasigns)
        self.gen_uni_feasigns = generate_uni_feasigns
        self.local_shard_num = shard_num

710 711 712 713
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset._generate_local_tables_unlock"
    )
714 715 716 717 718
    def generate_local_tables_unlock(self, table_id, fea_dim, read_thread_num,
                                     consume_thread_num, shard_num):
        self.dataset.generate_local_tables_unlock(
            table_id, fea_dim, read_thread_num, consume_thread_num, shard_num)

719 720 721
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.load_into_memory")
722
    def load_into_memory(self, is_shuffle=False):
723 724 725
        """
        Load data into memory

726 727 728
         Args:
            is_shuffle(bool): whether to use local shuffle, default is False

729 730 731
        Examples:
            .. code-block:: python

732
              # required: skiptest
733 734 735 736 737
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
738
        """
739
        self._prepare_to_run()
740 741 742 743 744
        if not self.use_ps_gpu:
            self.dataset.load_into_memory()
        elif core._is_compiled_with_heterps():
            self.psgpu.set_dataset(self.dataset)
            self.psgpu.load_into_memory(is_shuffle)
D
dongdaxiang 已提交
745

746 747 748
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.preload_into_memory")
749
    def preload_into_memory(self, thread_num=None):
J
jiaqi 已提交
750 751 752
        """
        Load data into memory in async mode

753 754 755
        Args:
            thread_num(int): preload thread num

J
jiaqi 已提交
756 757 758
        Examples:
            .. code-block:: python

759
              # required: skiptest
J
jiaqi 已提交
760 761 762 763 764 765 766 767
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self._prepare_to_run()
768 769 770 771
        if thread_num is None:
            thread_num = self.thread_num
        self.dataset.set_preload_thread_num(thread_num)
        self.dataset.create_preload_readers()
J
jiaqi 已提交
772 773
        self.dataset.preload_into_memory()

774 775 776
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.wait_preload_done")
J
jiaqi 已提交
777 778 779 780 781 782 783
    def wait_preload_done(self):
        """
        Wait preload_into_memory done

        Examples:
            .. code-block:: python

784
              # required: skiptest
J
jiaqi 已提交
785 786 787 788 789 790 791 792
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
        self.dataset.wait_preload_done()
793
        self.dataset.destroy_preload_readers()
J
jiaqi 已提交
794

795 796 797
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.local_shuffle")
D
dongdaxiang 已提交
798
    def local_shuffle(self):
799 800 801
        """
        Local shuffle

802 803 804
        Examples:
            .. code-block:: python

805
              # required: skiptest
806 807 808 809 810 811
              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.local_shuffle()
812
        """
813
        self.dataset.local_shuffle()
D
dongdaxiang 已提交
814

815 816 817
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.global_shuffle")
818
    def global_shuffle(self, fleet=None, thread_num=12):
819 820
        """
        Global shuffle.
821 822 823
        Global shuffle can be used only in distributed mode. i.e. multiple
        processes on single machine or multiple machines training together.
        If you run in distributed mode, you should pass fleet instead of None.
824

825
        Examples:
826 827
            .. code-block:: python

828
              # required: skiptest
829 830 831 832 833 834 835
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
836 837

        Args:
838
            fleet(Fleet): fleet singleton. Default None.
839
            thread_num(int): shuffle thread num. Default is 12.
840

841
        """
842
        if fleet is not None:
X
xujiaqi01 已提交
843
            fleet._role_maker.barrier_worker()
844 845
            if self.trainer_num == -1:
                self.trainer_num = fleet.worker_num()
846
        if self.fleet_send_batch_size is None:
847 848 849
            self.fleet_send_batch_size = 1024
        if self.fleet_send_sleep_seconds is None:
            self.fleet_send_sleep_seconds = 0
850
        self.dataset.register_client2client_msg_handler()
851
        self.dataset.set_trainer_num(self.trainer_num)
J
jiaqi 已提交
852
        self.dataset.set_fleet_send_batch_size(self.fleet_send_batch_size)
853
        self.dataset.set_fleet_send_sleep_seconds(self.fleet_send_sleep_seconds)
854
        if fleet is not None:
X
xujiaqi01 已提交
855
            fleet._role_maker.barrier_worker()
856
        self.dataset.global_shuffle(thread_num)
857
        if fleet is not None:
X
xujiaqi01 已提交
858
            fleet._role_maker.barrier_worker()
859 860 861
        if self.merge_by_lineid:
            self.dataset.merge_by_lineid()
        if fleet is not None:
X
xujiaqi01 已提交
862
            fleet._role_maker.barrier_worker()
D
dongdaxiang 已提交
863

864 865 866
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.release_memory")
867 868
    def release_memory(self):
        """
869 870
        :api_attr: Static Graph
        
871 872
        Release InMemoryDataset memory data, when data will not be used again.

873 874 875
        Examples:
            .. code-block:: python

876
              # required: skiptest
877 878 879 880 881 882 883 884 885 886 887 888
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              exe = fluid.Executor(fluid.CPUPlace())
              exe.run(fluid.default_startup_program())
              exe.train_from_dataset(fluid.default_main_program(), dataset)
              dataset.release_memory()

889 890
        """
        self.dataset.release_memory()
D
dongdaxiang 已提交
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
    def get_pv_data_size(self):
        """
        Get memory data size of Pv, user can call this function to know the pv num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Returns:
            The size of memory pv data.

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_pv_data_size()

        """
        return self.dataset.get_pv_data_size()

916 917 918
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_memory_data_size")
919 920 921 922 923 924 925 926 927 928 929 930 931 932
    def get_memory_data_size(self, fleet=None):
        """
        Get memory data size, user can call this function to know the num
        of ins in all workers after load into memory.

        Note:
            This function may cause bad performance, because it has barrier

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of memory data.

933 934 935
        Examples:
            .. code-block:: python

936
              # required: skiptest
937 938 939 940 941 942 943
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              print dataset.get_memory_data_size(fleet)
944 945 946 947 948 949 950

        """
        import numpy as np
        local_data_size = self.dataset.get_memory_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
951 952
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
953 954 955
            return global_data_size[0]
        return local_data_size[0]

956 957 958
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.InMemoryDataset.get_shuffle_data_size")
959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
    def get_shuffle_data_size(self, fleet=None):
        """
        Get shuffle data size, user can call this function to know the num
        of ins in all workers after local/global shuffle.

        Note:
            This function may cause bad performance to local shuffle,
            because it has barrier. It does not affect global shuffle.

        Args:
            fleet(Fleet): Fleet Object.

        Returns:
            The size of shuffle data.

974 975 976
        Examples:
            .. code-block:: python

977
              # required: skiptest
978 979 980 981 982 983 984 985
              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
              dataset.global_shuffle(fleet)
              print dataset.get_shuffle_data_size(fleet)
986 987 988 989 990 991 992

        """
        import numpy as np
        local_data_size = self.dataset.get_shuffle_data_size()
        local_data_size = np.array([local_data_size])
        if fleet is not None:
            global_data_size = local_data_size * 0
X
xujiaqi01 已提交
993 994
            fleet._role_maker.all_reduce_worker(local_data_size,
                                                global_data_size)
995 996 997
            return global_data_size[0]
        return local_data_size[0]

Y
yaoxuefeng 已提交
998 999 1000 1001 1002 1003 1004
    def _set_heter_ps(self, enable_heter_ps=False):
        """
        Set heter ps mode
        user no need to call this function.
        """
        self.dataset.set_heter_ps(enable_heter_ps)

X
xjqbest 已提交
1005

D
dongdaxiang 已提交
1006
class QueueDataset(DatasetBase):
1007 1008 1009
    """
    QueueDataset, it will process data streamly.

1010 1011 1012 1013 1014 1015
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory().create_dataset("QueueDataset")

1016
    """
D
dongdaxiang 已提交
1017

D
dongdaxiang 已提交
1018
    def __init__(self):
1019
        """
D
dongdaxiang 已提交
1020 1021
        Initialize QueueDataset
        This class should be created by DatasetFactory
1022
        """
1023
        super(QueueDataset, self).__init__()
D
dongdaxiang 已提交
1024
        self.proto_desc.name = "MultiSlotDataFeed"
X
xujiaqi01 已提交
1025

1026 1027 1028
    @deprecated(
        since="2.0.0",
        update_to="paddle.distributed.QueueDataset._prepare_to_run")
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def _prepare_to_run(self):
        """
        Set data_feed_desc/thread num/filelist before run,
        user no need to call this function.
        """
        if self.thread_num > len(self.filelist):
            self.thread_num = len(self.filelist)
        if self.thread_num == 0:
            self.thread_num = 1
        self.dataset.set_thread_num(self.thread_num)
        self.dataset.set_filelist(self.filelist)
        self.dataset.set_data_feed_desc(self.desc())
        self.dataset.create_readers()

X
xujiaqi01 已提交
1043
    def local_shuffle(self):
1044
        """
1045
        Local shuffle data.
D
dongdaxiang 已提交
1046

D
dongdaxiang 已提交
1047 1048
        Local shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1049 1050 1051 1052 1053 1054 1055 1056

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.local_shuffle()

1057 1058 1059
        Raises:
            NotImplementedError: QueueDataset does not support local shuffle

1060
        """
D
dongdaxiang 已提交
1061 1062 1063
        raise NotImplementedError(
            "QueueDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")
X
xujiaqi01 已提交
1064

1065
    def global_shuffle(self, fleet=None):
1066
        """
1067 1068
        Global shuffle data.

D
dongdaxiang 已提交
1069 1070
        Global shuffle is not supported in QueueDataset
        NotImplementedError will be raised
1071

1072 1073 1074
        Args:
            fleet(Fleet): fleet singleton. Default None.

1075 1076 1077 1078 1079 1080 1081 1082
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet
              dataset = fluid.DatasetFactory().create_dataset("QueueDataset")
              dataset.global_shuffle(fleet)

1083 1084 1085
        Raises:
            NotImplementedError: QueueDataset does not support global shuffle

1086
        """
D
dongdaxiang 已提交
1087 1088 1089
        raise NotImplementedError(
            "QueueDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1090 1091 1092 1093 1094


class FileInstantDataset(DatasetBase):
    """
    FileInstantDataset, it will process data streamly.
1095 1096 1097 1098 1099 1100

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          dataset = fluid.DatasetFactory.create_dataset("FileInstantDataset")
H
hutuxian 已提交
1101 1102 1103 1104
    """

    def __init__(self):
        """
1105 1106
        Initialize FileInstantDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1107 1108 1109 1110 1111 1112
        """
        super(FileInstantDataset, self).__init__()
        self.proto_desc.name = "MultiSlotFileInstantDataFeed"

    def local_shuffle(self):
        """
1113 1114
        Local shuffle
        FileInstantDataset does not support local shuffle
H
hutuxian 已提交
1115 1116 1117 1118 1119 1120 1121 1122
        """
        raise NotImplementedError(
            "FileInstantDataset does not support local shuffle, "
            "please use InMemoryDataset for local_shuffle")

    def global_shuffle(self, fleet=None):
        """
        Global shuffle
1123
        FileInstantDataset does not support global shuffle
H
hutuxian 已提交
1124 1125 1126 1127
        """
        raise NotImplementedError(
            "FileInstantDataset does not support global shuffle, "
            "please use InMemoryDataset for global_shuffle")
H
hutuxian 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137


class BoxPSDataset(InMemoryDataset):
    """
    BoxPSDataset: derived from InMemoryDataset.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
H
hutuxian 已提交
1138
          dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
H
hutuxian 已提交
1139 1140 1141 1142
    """

    def __init__(self):
        """
1143 1144
        Initialize BoxPSDataset
        This class should be created by DatasetFactory
H
hutuxian 已提交
1145 1146 1147
        """
        super(BoxPSDataset, self).__init__()
        self.boxps = core.BoxPS(self.dataset)
1148
        self.proto_desc.name = "PaddleBoxDataFeed"
H
hutuxian 已提交
1149

H
hutuxian 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158
    def set_date(self, date):
        """
        Workaround for date
        """
        year = int(date[:4])
        month = int(date[4:6])
        day = int(date[6:])
        self.boxps.set_date(year, month, day)

H
hutuxian 已提交
1159 1160
    def begin_pass(self):
        """
1161
        Begin Pass
H
hutuxian 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170
        Notify BoxPS to load sparse parameters of next pass to GPU Memory 

        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              dataset.begin_pass()
        """
H
hutuxian 已提交
1171 1172
        self.boxps.begin_pass()

1173
    def end_pass(self, need_save_delta):
H
hutuxian 已提交
1174
        """
1175
        End Pass
H
hutuxian 已提交
1176 1177 1178 1179 1180 1181
        Notify BoxPS that current pass ended 
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
1182
              dataset.end_pass(True)
H
hutuxian 已提交
1183
        """
1184
        self.boxps.end_pass(need_save_delta)
H
hutuxian 已提交
1185 1186 1187

    def wait_preload_done(self):
        """
T
tianshuo78520a 已提交
1188
        Wait async preload done
1189
        Wait Until Feed Pass Done
H
hutuxian 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
              dataset.wait_preload_done()
        """
H
hutuxian 已提交
1200 1201 1202 1203
        self.boxps.wait_feed_pass_done()

    def load_into_memory(self):
        """
H
hutuxian 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
        Load next pass into memory and notify boxps to fetch its emb from SSD
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.load_into_memory()
	    """
H
hutuxian 已提交
1214 1215 1216 1217 1218
        self._prepare_to_run()
        self.boxps.load_into_memory()

    def preload_into_memory(self):
        """
H
hutuxian 已提交
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
        Begin async preload next pass while current pass may be training
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
              filelist = ["a.txt", "b.txt"]
              dataset.set_filelist(filelist)
              dataset.preload_into_memory()
        """
H
hutuxian 已提交
1229 1230
        self._prepare_to_run()
        self.boxps.preload_into_memory()
H
hutuxian 已提交
1231 1232 1233 1234 1235

    def _dynamic_adjust_before_train(self, thread_num):
        if not self.is_user_set_queue_num:
            self.dataset.dynamic_adjust_channel_num(thread_num, True)
        self.dataset.dynamic_adjust_readers_num(thread_num)
1236 1237 1238

    def _dynamic_adjust_after_train(self):
        pass
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    def slots_shuffle(self, slots):
        """
        Slots Shuffle 
        Slots Shuffle is a shuffle method in slots level, which is usually used 
        in sparse feature with large scale of instances. To compare the metric, i.e.
        auc while doing slots shuffle on one or several slots with baseline to 
        evaluate the importance level of slots(features).
        
        Args:
            slots(list[string]): the set of slots(string) to do slots shuffle.

        Examples:
            import paddle.fluid as fluid
            dataset = fluid.DatasetFactory().create_dataset("InMemoryDataset")
            dataset.set_merge_by_lineid()
            #suppose there is a slot 0
            dataset.slots_shuffle(['0'])
        """
        slots_set = set(slots)
        self.boxps.slots_shuffle(slots_set)