dist_matmul.py 39.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

from .common import DistributedOperator
from .common import DistributedOperatorImpl
from .common import register_distributed_operator
from .common import register_distributed_operator_impl
19 20
from .common import copy_distributed_attr_for_var
from .common import copy_distributed_attr_for_dist_op
21 22 23 24 25 26
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
27
from ..attribute import OperatorDistributedAttribute
28 29 30 31
from paddle.fluid import core, unique_name
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
32
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
33
from ..process import new_process_group
34
from ..utils import _get_comm_group, _get_corresponding_rank
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127


def _update_dims_mapping_for_matmul(op_dist_attr):
    changed = False
    op_desc = op_dist_attr.get_owner_op().desc
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

    # Deal with dim > 2 and take care of broadcasting 
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
        assert compatible_dims_mapping is not None, "There is no compatible dim mapping."

        for i in range(x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - x_dims_mapping_len)
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - y_dims_mapping_len)
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

        for i in range(out_dims_mapping_len - 2):
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

    # The following which uses negative index can be work 
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

    # Remove unnecessary dim mapping to make sure the lenght of dims_mapping is same as its tensor
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

    dist_op_helper = ctx.get_dist_op_helper()
    main_block = dist_op_helper.get_dst_main_program().global_block()
    backward_op = dist_op_helper.get_cur_src_op()
    rank_id = dist_op_helper.get_rank_id()
    dist_attr = ctx.get_op_distributed_attr_for_program(backward_op)
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
    if rank_id not in dist_attr.get_process_mesh().process_group:
        rank_id = _get_corresponding_rank(dist_attr.get_process_mesh(), rank_id)

    # check if need gradient allreduce
    need_gradient_allreduce = False

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')

    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])
    assert len(
        kwargs['X@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['X@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
    assert not X_var.is_parameter, "left operand(X) [{}] of dist matmul should not be parameter".format(
        X_var.name)

    process_mesh = dist_attr.get_process_mesh()
    var_dim_mapping = dist_attr.get_input_dims_mapping(X_var.name)
    mesh_shape = process_mesh.topology
    batch_size_axis = var_dim_mapping[0]
    if batch_size_axis > -1 and mesh_shape[batch_size_axis] > 1:
        need_gradient_allreduce = True
        group_ranks = _get_comm_group(process_mesh.process_group,
                                      process_mesh.topology, batch_size_axis,
                                      rank_id)
        dp_degree = len(group_ranks)
        dp_group = new_process_group(group_ranks)

    Y_var = main_block.var(kwargs['Y'][0])
    if need_gradient_allreduce and Y_var.is_parameter:
        Y_Grad_var = main_block.var(kwargs['Y@GRAD'][0])
        allreduce_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': [Y_Grad_var]},
            outputs={'Out': [Y_Grad_var]},
            attrs={
                'ring_id': dp_group.id,
                'use_calc_stream': True,
                OP_ROLE_KEY: OpRole.Backward
            })
        scale_op = main_block.append_op(
            type='scale',
            inputs={'X': Y_Grad_var},
            outputs={'Out': Y_Grad_var},
            attrs={'scale': 1.0 / dp_degree,
                   OP_ROLE_KEY: OpRole.Backward})
        main_block._sync_with_cpp()

        dims_mapping = ctx.get_tensor_distributed_attr_for_program(
            Y_Grad_var).get_dims_mapping()
        process_mesh = dist_attr.get_process_mesh()
        for op in [allreduce_op, scale_op]:
            op_attr = OperatorDistributedAttribute(op, ctx)
            op_attr.set_process_mesh(process_mesh)
            op_attr.set_output_dims_mapping(Y_Grad_var.name, dims_mapping)
            op_attr.set_input_dims_mapping(Y_Grad_var.name, dims_mapping)
            ctx.set_op_distributed_attr_for_program(op, op_attr)


def _init_param_sync(Weight_var, dist_op_helper, startup_block, ctx, rank_id):

    assert Weight_var.name not in dist_op_helper.already_init_sync_vars
    assert startup_block.has_var(Weight_var.name)
    dist_op_helper.already_init_sync_vars.add(Weight_var.name)
    param = startup_block.var(Weight_var.name)
    param_dist_attr = ctx.get_tensor_distributed_attr_for_program(param)
    process_mesh = param_dist_attr.get_process_mesh()
    dim_mapping = param_dist_attr.get_dims_mapping()

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
            group_ranks = _get_comm_group(process_mesh.process_group,
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

            startup_block.append_op(
                type='c_broadcast',
                inputs={'X': param},
                outputs={'Out': param},
                attrs={
                    'ring_id': sync_group.id,
                    'root': 0,
                    'use_calc_stream': True,
                    OP_ROLE_KEY: OpRole.Forward
                })
    startup_block._sync_with_cpp()


252 253 254 255 256 257 258 259 260 261 262 263 264 265
class DistributedMatmul(DistributedOperator):
    def __init__(self, name):
        super(DistributedMatmul, self).__init__()
        self._name = name


register_distributed_operator("matmul", DistributedMatmul("matmul"))


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl0, self).__init__()
        self._name = name
266
        self._forward_implemented = True
267
        self._backward_implemented = True
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_helper = ctx.get_dist_op_helper()
        main_block = dist_op_helper.get_dst_main_program().global_block()
        startup_block = dist_op_helper.get_dst_startup_program().global_block()
        src_op = dist_op_helper.get_cur_src_op()
        rank_id = dist_op_helper.get_rank_id()
        op_dist_attr = ctx.get_op_distributed_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.get_process_mesh().process_group:
            rank_id = _get_corresponding_rank(op_dist_attr.get_process_mesh(),
                                              rank_id)

        # check validation of inputs / outputs 
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.get_process_mesh().topology
        process_mesh_group = op_dist_attr.get_process_mesh().process_group

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0, X_var)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_op = main_block.append_op(
            type='matmul', inputs=inputs, outputs={'Out': Out_var}, attrs=attrs)

        # copy serial op's dist_attr to dist op's dist_attr
        copy_distributed_attr_for_dist_op(c_identity_op, main_block,
                                          op_dist_attr)
        copy_distributed_attr_for_dist_op(matmul_op, main_block, op_dist_attr)

        # init param sync
        if Weight_var.is_parameter:
            _init_param_sync(Weight_var, dist_op_helper, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
410

411 412 413 414 415 416

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl1, self).__init__()
        self._name = name
417
        self._forward_implemented = True
418
        self._backward_implemented = True
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_helper = ctx.get_dist_op_helper()
        main_block = dist_op_helper.get_dst_main_program().global_block()
        startup_block = dist_op_helper.get_dst_startup_program().global_block()
        src_op = dist_op_helper.get_cur_src_op()
        rank_id = dist_op_helper.get_rank_id()
        op_dist_attr = ctx.get_op_distributed_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.get_process_mesh().process_group:
            rank_id = _get_corresponding_rank(op_dist_attr.get_process_mesh(),
                                              rank_id)

        # check validation of inputs / outputs 
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.get_process_mesh().topology
        process_mesh_group = op_dist_attr.get_process_mesh().process_group

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
        }
        inputs = {'X': X_var, 'Y': Weight_var}
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # copy Out_var's dist_attr to intermediate_var_0's dist_attr
        copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0, Out_var)

        matmul_op = main_block.append_op(
            type='matmul',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })

        # copy serial op's dist_attr to dist op's dist_attr
        copy_distributed_attr_for_dist_op(matmul_op, main_block, op_dist_attr)
        copy_distributed_attr_for_dist_op(c_allreduce_sum_op, main_block,
                                          op_dist_attr)

        # init param sync
        if Weight_var.is_parameter:
            _init_param_sync(Weight_var, dist_op_helper, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
562

563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614

# ReplicateParallel 
class DistributedMatmulImpl2(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulImpl2, self).__init__()
        self._name = name

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

615 616 617 618
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


class DistributedMatmulV2(DistributedOperator):
    def __init__(self, name):
        super(DistributedMatmulV2, self).__init__()
        self._name = name


register_distributed_operator("matmul_v2", DistributedMatmulV2("matmul_v2"))


637 638 639 640 641 642
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl0, self).__init__()
        self._name = name
        self._forward_implemented = True
643
        self._backward_implemented = True
644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_dim_shard(y_dims_mapping[0]) or is_dim_replicate(y_dims_mapping[
                1]):
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_helper = ctx.get_dist_op_helper()
        main_block = dist_op_helper.get_dst_main_program().global_block()
        startup_block = dist_op_helper.get_dst_startup_program().global_block()
        src_op = dist_op_helper.get_cur_src_op()
        rank_id = dist_op_helper.get_rank_id()
        op_dist_attr = ctx.get_op_distributed_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.get_process_mesh().process_group:
            rank_id = _get_corresponding_rank(op_dist_attr.get_process_mesh(),
                                              rank_id)

        # check validation of inputs / outputs 
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.get_process_mesh().topology
        process_mesh_group = op_dist_attr.get_process_mesh().process_group

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # copy X_var's dist_attr to intermediate_var_0's dist_attr
        copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0, X_var)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
            })

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': Out_var},
            attrs=attrs)

        # copy serial op's dist_attr to dist op's dist_attr
        copy_distributed_attr_for_dist_op(c_identity_op, main_block,
                                          op_dist_attr)
        copy_distributed_attr_for_dist_op(matmul_v2_op, main_block,
                                          op_dist_attr)

        # init param sync
        if Weight_var.is_parameter:
            _init_param_sync(Weight_var, dist_op_helper, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
786 787 788 789 790 791 792 793


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
    def __init__(self, name):
        super(DistributedMatmulV2Impl1, self).__init__()
        self._name = name
        self._forward_implemented = True
794
        self._backward_implemented = True
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(y_dims_mapping[
                -1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_helper = ctx.get_dist_op_helper()
        main_block = dist_op_helper.get_dst_main_program().global_block()
        startup_block = dist_op_helper.get_dst_startup_program().global_block()
        src_op = dist_op_helper.get_cur_src_op()
        rank_id = dist_op_helper.get_rank_id()
        op_dist_attr = ctx.get_op_distributed_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.get_process_mesh().process_group:
            rank_id = _get_corresponding_rank(op_dist_attr.get_process_mesh(),
                                              rank_id)

        # check validation of inputs / outputs 
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[0]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.get_process_mesh().topology
        process_mesh_group = op_dist_attr.get_process_mesh().process_group

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {'trans_x': False, 'trans_y': False}
        inputs = {'X': X_var, 'Y': Weight_var}
        intermediate_var_0 = main_block.create_var(
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # copy Out_var's dist_attr to intermediate_var_0's dist_attr
        copy_distributed_attr_for_var(op_dist_attr, intermediate_var_0, Out_var)

        matmul_v2_op = main_block.append_op(
            type='matmul_v2',
            inputs=inputs,
            outputs={'Out': intermediate_var_0},
            attrs=attrs)

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True
            })

        # copy serial op's dist_attr to dist op's dist_attr
        copy_distributed_attr_for_dist_op(matmul_v2_op, main_block,
                                          op_dist_attr)
        copy_distributed_attr_for_dist_op(c_allreduce_sum_op, main_block,
                                          op_dist_attr)

        # init param sync
        if Weight_var.is_parameter:
            _init_param_sync(Weight_var, dist_op_helper, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
935 936


937
# ReplicateParallel 
938
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
939
    def __init__(self, name):
940
        super(DistributedMatmulV2Impl2, self).__init__()
941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        self._name = name

    def is_process_mesh_compatible(self, op_dist_attr):
        """ No restriction for now. """
        return True

    def is_input_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
        if is_valid_list_index(x_dims_mapping,
                               -2) and is_dim_shard(x_dims_mapping[-2]):
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
        if is_valid_list_index(y_dims_mapping,
                               -2) and is_dim_shard(y_dims_mapping[-2]):
            return False

        return True

    def is_output_compatible(self, op_dist_attr):
        op_desc = op_dist_attr.get_owner_op().desc
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
        if is_valid_list_index(out_dims_mapping,
                               -2) and is_dim_shard(out_dims_mapping[-2]):
            return False

        return True

    def update_dims_mapping(self, op_dist_attr):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(op_dist_attr)
        if dim_changed:
            changed = True
        return changed

988 989 990 991
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

992

993 994 995 996
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
997
register_distributed_operator_impl(
998
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))