npu_op_runner.h 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef PADDLE_WITH_ASCEND_CL
16 17
#pragma once
#include <paddle/fluid/framework/operator.h>
18
#include <paddle/fluid/framework/type_defs.h>
19 20 21 22 23

#include <string>
#include <vector>

#include "acl/acl.h"
24
#include "paddle/fluid/framework/tensor_util.h"
25 26 27 28 29 30 31
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
32 33
using NPUAttribute = framework::NPUAttribute;
using NPUAttributeMap = framework::NPUAttributeMap;
34
using DeviceContextPool = platform::DeviceContextPool;
35 36 37 38 39 40 41

class NpuOpRunner {
 public:
  explicit NpuOpRunner(std::string op_type);
  explicit NpuOpRunner(std::string op_type,
                       const std::vector<Tensor> &inputs = {},
                       const std::vector<Tensor> &outputs = {},
42
                       const NPUAttributeMap &attrs = {});
43 44 45 46 47

  ~NpuOpRunner();

  const std::string &Type();

48
  NpuOpRunner &AddAttr(const std::string &name, const NPUAttribute &attr);
49

50
  NpuOpRunner &AddAttrs(const NPUAttributeMap &attrs);
51 52 53 54 55 56 57

  NpuOpRunner &AddInput(const Tensor &tensor);

  NpuOpRunner &AddOutput(const Tensor &tensor);

  NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);

58 59
  NpuOpRunner &AddInputNames(const std::vector<std::string> &names);

60 61 62 63 64 65 66 67 68 69 70 71 72 73
  NpuOpRunner &AddOutputs(const std::vector<Tensor> &tensors);

  aclTensorDesc *GetInputDesc(size_t index);

  aclTensorDesc *GetOutputDesc(size_t index);

  std::vector<aclTensorDesc *> &GetInputDescs();

  std::vector<aclTensorDesc *> &GetOutputDescs();

  std::vector<aclDataBuffer *> &GetInputBuffers();

  std::vector<aclDataBuffer *> &GetOutputBuffers();

74
  void Run(aclrtStream stream = nullptr);
75 76 77 78 79 80 81 82 83 84 85 86 87 88

 private:
  aclTensorDesc *CreateTensorDesc(Tensor tensor);
  aclDataBuffer *CreateDataBuffer(Tensor tensor);

 private:
  std::string op_type_;
  std::vector<aclDataBuffer *> input_buffers_;
  std::vector<aclDataBuffer *> output_buffers_;
  std::vector<aclTensorDesc *> input_descs_;
  std::vector<aclTensorDesc *> output_descs_;
  aclopAttr *attr_{nullptr};
};

89 90
aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype);

91 92 93 94 95 96 97 98 99 100
aclrtStream GetCurrentNPUStream(int device_id = -1);

template <typename T>
void FillNpuTensorWithConstant(Tensor *tensor, T val) {
  PADDLE_ENFORCE_EQ(
      tensor->IsInitialized(), true,
      platform::errors::InvalidArgument("The tensor should be initialized."));
  PADDLE_ENFORCE_EQ(
      platform::is_npu_place(tensor->place()), true,
      platform::errors::InvalidArgument("The tensor should be on NPUPlace."));
101 102 103 104 105 106 107 108 109

  int numel = tensor->numel();
  if (numel == 1) {
    Tensor npu_pinned_tensor(tensor->type());
    platform::NPUPinnedPlace npu_pinned_place;
    auto npu_pinned_ptr =
        npu_pinned_tensor.mutable_data<T>({1}, npu_pinned_place);
    *npu_pinned_ptr = val;

110
    memory::Copy(BOOST_GET_CONST(platform::NPUPlace, tensor->place()),
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
                 tensor->data<void>(), npu_pinned_place, npu_pinned_ptr,
                 sizeof(T), GetCurrentNPUStream());

    auto npu_pinned_allocator =
        static_cast<paddle::memory::allocation::NPUPinnedAllocator *>(
            paddle::memory::allocation::AllocatorFacade::Instance()
                .GetAllocator(npu_pinned_place)
                .get());
    paddle::memory::allocation::Allocation *allocation =
        npu_pinned_tensor.Holder().get();

    npu_pinned_allocator->RecordEvent(allocation, GetCurrentNPUStream());
  } else {
    std::vector<T> vec(numel, static_cast<T>(val));
    auto device_id = platform::GetCurrentNPUDeviceId();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
        pool.Get(platform::NPUPlace(device_id)));

    paddle::framework::TensorFromVector<T>(vec, *dev_ctx, tensor);
131 132 133
  }
}

134 135
}  // namespace operators
}  // namespace paddle
136
#endif