common.py 90.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiaoting 已提交
15
import warnings
16
import paddle
X
xiaoting 已提交
17
from paddle.fluid.layer_helper import LayerHelper
18 19 20 21
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
22
from ...fluid import dygraph_utils
23
# TODO: define the common functions to build a neural network
24 25
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
26 27 28
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
29
from ...fluid.data_feeder import check_variable_and_dtype, check_dtype
H
hong 已提交
30
from ...fluid.framework import _varbase_creator, _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
X
xiaoting 已提交
31

Z
zhiboniu 已提交
32 33
from ...fluid import dygraph_utils

W
wanghuancoder 已提交
34
from paddle import _C_ops
Z
zhiboniu 已提交
35 36 37
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
38
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
39
from paddle.static import default_main_program
40

41 42
__all__ = []

X
xiaoting 已提交
43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

    This op returns a col buffer of sliding local blocks of input x, also known
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor corresponding to the sliding local blocks.
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Return Type:
        Tensor

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

    assert len(x.shape) == 4, \
            "input should be the format of [N, C, H, W]"

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
        assert isinstance(kernel_sizes, list) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list of two integers"

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
        assert isinstance(strides, list) and (len(strides) == 2), \
            "strides should either be an integer or a list of two integers"

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
        assert isinstance(dilations, list) and (len(dilations) == 2), \
            "dilations should either be an integer or a list of two integers"

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

    if in_dygraph_mode():
        return _C_ops.final_state_unfold(x, kernel_sizes, strides, paddings,
                                         dilations)

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
160 161 162 163 164 165 166 167 168
    helper.append_op(type="unfold",
                     inputs={"X": x},
                     outputs={"Y": out},
                     attrs={
                         "kernel_sizes": kernel_sizes,
                         "strides": strides,
                         "paddings": paddings,
                         "dilations": dilations
                     })
169 170 171
    return out


X
xiaoting 已提交
172
def interpolate(x,
173 174 175 176
                size=None,
                scale_factor=None,
                mode='nearest',
                align_corners=False,
X
xiaoting 已提交
177
                align_mode=0,
178 179
                data_format='NCHW',
                name=None):
X
xiaoting 已提交
180
    """
S
swtkiwi 已提交
181

X
xiaoting 已提交
182
    This op resizes a batch of images.
183 184
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
185
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
186 187
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
188
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
189

X
xiaoting 已提交
190
    Supporting resample methods:
191 192 193 194 195
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
196
        'area': Area interpolation
197 198 199 200

    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
X
xiaoting 已提交
201 202 203 204 205 206 207 208 209 210 211 212 213 214
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
215
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
216 217 218 219 220 221 222
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

223 224 225 226 227 228
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to 
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or 
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
229 230 231 232
    Example:

    .. code-block:: text

233
        For scale_factor:
X
xiaoting 已提交
234 235 236 237 238
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

239 240 241 242 243 244 245 246 247 248 249
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        
X
xiaoting 已提交
250
        Nearest neighbor interpolation:
X
xiaoting 已提交
251

X
xiaoting 已提交
252 253 254 255 256
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
257

X
xiaoting 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

299 300 301
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
    
X
xiaoting 已提交
302 303
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
304
    
X
xiaoting 已提交
305 306
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
307
    
X
xiaoting 已提交
308 309
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
310
    
X
xiaoting 已提交
311 312
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
313
    
X
xiaoting 已提交
314
    Parameters:
X
xiaoting 已提交
315
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
316
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
317
        size (list|tuple|Tensor|None): Output shape of image resize
318 319
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
320
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
321
             If a Tensor, its dimensions size should be a 1.
322 323 324
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
325
             Default: None.
326
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
327
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
328 329
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
330
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
331 332 333 334
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
335
        data_format (str, optional): Specify the data format of the input, and the data format of the output
336
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
337 338 339
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
340 341 342
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
343
    Returns:
344
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
345 346 347
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
X
xiaoting 已提交
348
        TypeError: size should be a list or tuple or Tensor.
349
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
350
                    'trilinear', 'bicubic', 'area' or 'nearest' currently.
351
        ValueError: 'linear' only support 3-D tensor.
352 353
        ValueError: 'bilinear' and 'bicubic' only support 4-D tensor.
        ValueError: 'nearest' only support 4-D or 5-D tensor.
354 355 356 357 358 359
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
X
xiaoting 已提交
360 361
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
362 363
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.

X
xiaoting 已提交
364 365 366
    Examples:
        .. code-block:: python

367 368
	        import paddle
	        import numpy as np
X
xiaoting 已提交
369 370 371 372 373 374 375
            import paddle.nn.functional as F
            
            # given out size
            input_data = np.random.rand(2,3,6,10).astype("float32")
            x = paddle.to_tensor(input_data)
            output_1 = F.interpolate(x=x, size=[12,12])
    	    print(output_1.shape)
376
	        # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
377 378 379 380 381 382 383 384 385 386
            
            # given scale
            output_2 = F.interpolate(x=x, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
            
            # bilinear interp
            output_3 = F.interpolate(x=x, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
387
    """
388 389 390 391 392 393 394 395 396 397
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
398
        'AREA',
399
    ]
X
xiaoting 已提交
400 401
    if resample not in resample_methods:
        raise ValueError(
402
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
403
            " 'bicubic' or 'nearest' currently.")
X
xiaoting 已提交
404

X
xiaoting 已提交
405
    if resample in ['LINEAR'] and len(x.shape) != 3:
406
        raise ValueError("'linear' only support 3-D tensor.")
407

408 409 410 411 412
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
413
    if resample == 'TRILINEAR' and len(x.shape) != 5:
414 415 416 417
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
418 419 420

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
421

X
xiaoting 已提交
422 423
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
424 425 426 427
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
428

X
xiaoting 已提交
429
    if resample == 'AREA':
430 431
        if isinstance(size, list) or isinstance(size, tuple) or isinstance(
                size, Variable):
X
xiaoting 已提交
432 433 434 435 436 437 438 439
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
440

X
xiaoting 已提交
441
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
442
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
443
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
444 445
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
446
            " received but only `NCW` or `NWC` supported for 3-D input.")
X
xiaoting 已提交
447
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
448 449 450
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
X
xiaoting 已提交
451
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
452 453 454 455 456 457 458
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

459
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
460
        data_layout = 'NCHW'
461
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
462 463
        data_layout = 'NHWC'

X
xiaoting 已提交
464 465 466 467
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
468 469 470 471 472 473 474 475 476 477
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

478 479
    out_shape = size
    scale = scale_factor
480 481
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
482
    if out_shape is not None:
Z
zhiboniu 已提交
483
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
484 485 486
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
487
            if in_dynamic_mode():
488 489
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
490 491
                else:
                    out_shape = list(out_shape)
492 493 494
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
495
            if not (_is_list_or_turple_(out_shape)):
496
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
519 520 521 522 523
                        fill_constant([1],
                                      'int32',
                                      dim,
                                      force_cpu=True,
                                      out=temp_out)
X
xiaoting 已提交
524 525 526 527
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
528
            if len(x.shape) == 3:
529 530
                if len(out_shape) != 1:
                    raise ValueError(
531
                        "size length should be 2 for input 3-D tensor")
532 533 534 535 536
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
537
            if len(x.shape) == 4:
X
xiaoting 已提交
538
                if len(out_shape) != 2:
539
                    raise ValueError("size length should be 2 for "
X
xiaoting 已提交
540 541 542 543 544 545 546 547
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
548
            if len(x.shape) == 5:
X
xiaoting 已提交
549
                if len(out_shape) != 3:
550
                    raise ValueError("size length should be 3 for "
X
xiaoting 已提交
551 552 553 554 555 556 557 558 559 560 561 562
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
563
        if in_dynamic_mode() and isinstance(scale, Variable):
564
            scale = list(scale.numpy())
X
xiaoting 已提交
565 566 567 568 569 570
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
571 572 573 574
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
575
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
576 577 578 579 580 581 582 583
            if len(scale) != len(x.shape) - 2:
                raise ValueError("scale_shape length should be {} for "
                                 "input {}-D tensor.".format(
                                     len(x.shape) - 2, len(x.shape)))
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
584 585
        else:
            raise TypeError(
586 587
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
588

Z
zhiboniu 已提交
589
    if in_dynamic_mode():
X
xiaoting 已提交
590 591 592 593 594 595 596
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
W
wanghuancoder 已提交
597
            out = _C_ops.linear_interp_v2(x, *dy_attr)
598
        elif resample_type == "bilinear":
W
wanghuancoder 已提交
599
            out = _C_ops.bilinear_interp_v2(x, *dy_attr)
600
        elif resample_type == "trilinear":
W
wanghuancoder 已提交
601
            out = _C_ops.trilinear_interp_v2(x, *dy_attr)
602
        elif resample_type == "nearest":
W
wanghuancoder 已提交
603
            out = _C_ops.nearest_interp_v2(x, *dy_attr)
604
        elif resample_type == "bicubic":
W
wanghuancoder 已提交
605
            out = _C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
606
        return out
X
xiaoting 已提交
607
    out = helper.create_variable_for_type_inference(dtype)
608 609 610 611
    helper.append_op(type='{}_interp_v2'.format(resample_type),
                     inputs=inputs,
                     outputs={"Out": out},
                     attrs=attrs)
X
xiaoting 已提交
612
    return out
L
littletomatodonkey 已提交
613 614


X
xiaoting 已提交
615 616 617 618 619 620 621 622 623 624
def upsample(x,
             size=None,
             scale_factor=None,
             mode='nearest',
             align_corners=False,
             align_mode=0,
             data_format='NCHW',
             name=None):
    """
    This op resizes a batch of images.
625

X
xiaoting 已提交
626 627 628
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
629 630
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
    Linear interpolation is the method of using a line connecting two known quantities 
    to determine the value of an unknown quantity between the two known quantities. 
    
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
    
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
655

X
xiaoting 已提交
656 657 658
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
659

X
xiaoting 已提交
660 661 662
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
663 664 665 666 667 668 669

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
    Example:
    .. code-block:: text
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
    
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        size (list|tuple|Tensor|None): Output shape of image resize
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w) 
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor. 
760
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
761
             If a Tensor , its dimensions size should be a 1.
762 763 764 765
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if 
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
             Default: None.
        mode (str): The resample method. It supports 'linear', 'nearest', 'bilinear',
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
        TypeError: size should be a list or tuple or Tensor.
        ValueError: The 'mode' of image_resize can only be 'linear', 'bilinear',
                    'trilinear', 'bicubic', or 'nearest' currently.
        ValueError: 'linear' only support 3-D tensor.
        ValueError: 'bilinear', 'bicubic' and 'nearest' only support 4-D tensor.
        ValueError: 'trilinear' only support 5-D tensor.
        ValueError: One of size and scale_factor must not be None.
        ValueError: size length should be 1 for input 3-D tensor.
        ValueError: size length should be 2 for input 4-D tensor.
        ValueError: size length should be 3 for input 5-D tensor.
        ValueError: scale_factor should be greater than zero.
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
        ValueError: data_format can only be 'NCW', 'NWC', 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
        Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            import paddle.nn.functional as F

X
xiaoting 已提交
809
            input_data = np.random.rand(2,3,6,10).astype("float32")
X
xiaoting 已提交
810
            input = paddle.to_tensor(input_data)
X
xiaoting 已提交
811
            output = F.upsample(x=input, size=[12,12])
X
xiaoting 已提交
812 813 814 815 816 817 818 819
            print(output.shape)
            # [2L, 3L, 12L, 12L]

    """
    return interpolate(x, size, scale_factor, mode, align_corners, align_mode,
                       data_format)


820 821 822 823
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
824
    See :ref:`api_nn_Bilinear` for details and output shape.
825 826 827 828 829 830 831 832 833 834

    Parameters:
       x1 (Tensor): the first input tensor, it's data type should be float32, float64.
       x2 (Tensor): the second input tensor, it's data type should be float32, float64.
       weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
       bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
835
       Tensor: A 2-D Tensor of shape [batch_size, out_features].
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852

    Examples:
       .. code-block:: python

        import paddle
        import numpy
        import paddle.nn.functional as F

        x1 = numpy.random.random((5, 5)).astype('float32')
        x2 = numpy.random.random((5, 4)).astype('float32')
        w = numpy.random.random((1000, 5, 4)).astype('float32')
        b = numpy.random.random((1, 1000)).astype('float32')

        result = F.bilinear(paddle.to_tensor(x1), paddle.to_tensor(x2), paddle.to_tensor(w), paddle.to_tensor(b))           # result shape [5, 1000]

    """

Z
zhiboniu 已提交
853
    if in_dynamic_mode():
W
wanghuancoder 已提交
854
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
855 856 857 858 859 860 861 862 863 864 865

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

866 867 868
    helper.append_op(type="bilinear_tensor_product",
                     inputs=inputs,
                     outputs={"Out": out})
869 870 871 872

    return out


873 874 875 876 877 878 879 880 881 882 883 884 885 886
def dropout(x,
            p=0.5,
            axis=None,
            training=True,
            mode="upscale_in_train",
            name=None):
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
887 888
        p (float|int): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple): The axis along which the dropout is performed. Default None.
889
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
890
        mode(str): ['upscale_in_train'(default) | 'downscale_in_infer'].
891 892 893 894 895 896 897 898 899 900

                           1. upscale_in_train(default), upscale the output at training time

                              - train: out = input * mask / ( 1.0 - dropout_prob )
                              - inference: out = input

                           2. downscale_in_infer, downscale the output at inference

                              - train: out = input * mask
                              - inference: out = input * (1.0 - dropout_prob)
901
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
902 903 904 905

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

906

907 908
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
909

910
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
911 912 913

        ..  code-block:: text

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

939 940


941
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
942 943 944

        ..  code-block:: text

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
973
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
974 975 976 977 978 979 980 981 982 983
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
984 985 986

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
987 988

        .. code-block:: python
989

990 991 992 993 994 995 996 997 998 999
            import paddle
            import numpy as np

            x = np.array([[1,2,3], [4,5,6]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False) 
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
1000 1001 1002 1003 1004 1005
            print(x)
            print(y_train)
            print(y_test)
            print(y_0)
            print(y_1)
            print(y_01)
1006 1007

    """
1008 1009 1010 1011
    # fast return for p == 0
    if p == 0:
        return x

1012 1013 1014 1015 1016 1017
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a number")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1018 1019
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1020
    if axis and not isinstance(axis, (int, list, tuple)):
1021 1022 1023 1024 1025 1026
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
        mode = 'downgrade_in_infer' if mode == 'downscale_in_infer' else mode  #semantic transfer

H
hong 已提交
1027
        if _non_static_mode():
1028 1029
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1030 1031 1032 1033 1034 1035

            if in_dygraph_mode():
                out, mask = _C_ops.final_state_dropout( x, None, p, not training, mode, \
                    seed if seed is not None else 0, seed is not None)

                return out
1036 1037 1038 1039 1040
            out, mask = _C_ops.dropout(x, 'dropout_prob', p, 'is_test',
                                       not training, 'fix_seed', seed
                                       is not None, 'seed',
                                       seed if seed is not None else 0,
                                       'dropout_implementation', mode)
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            return out

        helper = LayerHelper('dropout', **locals())
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'dropout')

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True)

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1063 1064
        attrs = get_attrs(helper.main_program, p, not training, seed)

1065 1066 1067 1068 1069 1070 1071
        helper.append_op(type='dropout',
                         inputs={'X': [x]},
                         outputs={
                             'Out': [out],
                             'Mask': [mask]
                         },
                         attrs=attrs)
1072 1073
        return out
    else:  #sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1074
        if not in_dynamic_mode():
1075 1076 1077 1078 1079
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
            if p == 1.:
1080
                return paddle.scale(x, scale=0.)
1081

1082
            scale_input = paddle.scale(
1083 1084 1085 1086
                x, scale=1 / keep_prob) if mode == 'upscale_in_train' else x

            #get mask shape
            input_shape = x.shape
Z
zhiboniu 已提交
1087
            if not in_dynamic_mode():
1088
                input_shape_tensor = paddle.shape(x)
1089
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1090 1091
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
                raise ValueError("axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} " \
1092 1093 1094
                                 .format(len(input_shape), max(drop_axes)))
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1095 1096
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}"
                    .format(len(input_shape), len(drop_axes)))
1097
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1098
            if not in_dynamic_mode():
1099 1100 1101 1102 1103
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1104 1105

            #get mask
1106 1107 1108 1109
            random_tensor = paddle.uniform(mask_shape,
                                           dtype='float32',
                                           min=0.,
                                           max=1.0)
Z
zhiboniu 已提交
1110
            p = full(shape=[1], fill_value=p, dtype='float32')
1111
            keep_mask = paddle.greater_equal(random_tensor, p)
1112

1113 1114
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1115 1116 1117
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1118
            ret = paddle.scale(
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                x, scale=keep_prob) if mode == 'downscale_in_infer' else x
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1136
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1137 1138 1139 1140 1141
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1142

1143 1144
    Examples:
        .. code-block:: python
1145

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
                    print(x.numpy()[i,j,:,:])
                    print(y_train.numpy()[i,j,:,:]) # may all 0
                    print(y_test.numpy()[i,j,:,:])
    """
    input_shape = x.shape
    if len(input_shape) != 4:
        raise ValueError("dimensions of x should be 4, but received {} != 4"\
        .format(len(input_shape)))

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1169 1170 1171 1172 1173 1174
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCHW' else [0, 3],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1190
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1191 1192 1193 1194 1195
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1196

1197 1198
    Examples:
        .. code-block:: python
1199

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
            import paddle
            import numpy as np

            x = np.random.random(size=(2, 3, 4, 5, 6)).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x.numpy()[0,0,:,:,:])
            print(y_train.numpy()[0,0,:,:,:]) # may all 0
            print(y_test.numpy()[0,0,:,:,:])
    """

    input_shape = x.shape
    if len(input_shape) != 5:
        raise ValueError("dimensions of x should be 5, but received {} != 5" \
        .format(len(input_shape)))

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

1222 1223 1224 1225 1226 1227
    return dropout(x,
                   p=p,
                   axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
                   training=training,
                   mode="upscale_in_train",
                   name=name)
1228 1229


1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1248

1249 1250 1251 1252 1253 1254 1255
            import paddle
            import numpy as np

            x = np.array([[-1, 1], [-1, 1]]).astype('float32')
            x = paddle.to_tensor(x)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
1256 1257
            print(x)
            print(y_train)
1258
            # [[-0.10721093, 1.6655989 ], [-0.7791938, -0.7791938]] (randomly)
1259
            print(y_test)
1260 1261 1262 1263 1264 1265
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1266
    if not in_dynamic_mode():
1267 1268 1269 1270
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'alpha_dropout')

    if training:
1271
        if p == 1:
1272
            return paddle.scale(x, scale=0.)
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        #get transformation params
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
        a = ((1 - p) * (1 + p * alpha_p**2))**-0.5
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

        #get mask
1284 1285 1286 1287
        random_tensor = paddle.uniform(input_shape,
                                       dtype='float32',
                                       min=0.,
                                       max=1.0)
Z
zhiboniu 已提交
1288
        p = full(shape=[1], fill_value=p, dtype='float32')
1289 1290 1291
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1292
            full(shape=input_shape, fill_value=1., dtype=dtype), keep_mask)
1293 1294

        #apply mask
Z
zhiboniu 已提交
1295
        b = full(shape=[1], fill_value=b, dtype=dtype)
1296
        y = paddle.add(paddle.multiply(x, keep_mask),
1297
                       paddle.scale(drop_mask, scale=alpha_p))
1298
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1299 1300 1301 1302 1303
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1304 1305 1306
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1307 1308 1309
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1310 1311 1312 1313 1314
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1315 1316 1317 1318
        pad (Tensor | List[int] | Tuple[int]): The padding size with data type int.
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will 
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
L
littletomatodonkey 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right, 
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form 
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
        mode (str): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'.
            When in 'constant' mode, this op uses a constant value to pad the input tensor.
            When in 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
            When in 'replicate' mode, uses input boundaries to pad the input tensor.
            When in 'circular' mode, uses circular input to pad the input tensor.
            Default is 'constant'
        value (float32): The value to fill the padded areas in 'constant' mode . Default is 0.0
        data_format (str): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
           the input data.
           Default is  "NCHW"
        name (str, optional) : The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
                    
    Returns: a Tensor padded according to pad and mode and data type is same as input.
    Return Type: Tensor

    Examples:
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1345 1346 1347 1348 1349 1350 1351 1352 1353
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1354 1355 1356 1357 1358 1359 1360 1361
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1362
            Case 2:
L
littletomatodonkey 已提交
1363 1364 1365 1366 1367 1368 1369
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1370
            Case 3:
L
littletomatodonkey 已提交
1371 1372 1373 1374 1375 1376 1377
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1378
            Case 4:
L
littletomatodonkey 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

    Code Examples:
        .. code-block:: python
L
littletomatodonkey 已提交
1388

L
littletomatodonkey 已提交
1389 1390 1391 1392 1393 1394
            import numpy as np
            import paddle
            import paddle.nn.functional as F
            
            # example 1
            x_shape = (1, 1, 3)
L
littletomatodonkey 已提交
1395
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
1396
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1397
            print(y)
L
littletomatodonkey 已提交
1398
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1399
            
L
littletomatodonkey 已提交
1400
            # example 2
1401 1402 1403 1404 1405 1406 1407
            x_shape = (1, 1, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
            
            # example 3
L
littletomatodonkey 已提交
1408
            x_shape = (1, 1, 2, 3)
L
littletomatodonkey 已提交
1409 1410 1411
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
    assert mode in ['reflect', 'replicate', 'constant', 'circular'], \
            "mode should be one of constant, reflect, replicate, circular, but got {}.".format(mode)

    data_format = data_format.upper()
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], \
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], " \
        "but got {}".format(data_format)

    x_dim = len(x.shape)

1427 1428
    if mode == "constant" and isinstance(
            pad, (list, tuple)) and len(pad) == x_dim * 2:
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
        paddings = pad
        pad_value = value
        check_variable_and_dtype(x, 'x', [
            'float16', 'float32', 'float64', 'int32', 'int64', 'complex64',
            'complex128'
        ], "pad")

        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1439 1440 1441 1442 1443 1444 1445
        helper.append_op(type='pad',
                         inputs={'X': x},
                         outputs={'Out': out},
                         attrs={
                             'paddings': paddings,
                             'pad_value': float(pad_value)
                         })
1446
        return out
L
littletomatodonkey 已提交
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    assert x_dim in [
        3, 4, 5
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
    assert data_format in supported_format_map[x_dim], \
    "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format)

L
littletomatodonkey 已提交
1461 1462 1463 1464 1465 1466 1467 1468
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [3, 4]
1469
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1470 1471 1472
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [2]
1473
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1474 1475 1476 1477 1478
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = concat([zeros((4, ), dtype="int32"), pad], axis=0)
                unsqueezed_dim = [2, 3]
1479
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1480 1481 1482
            elif x_dim == 4:
                pad = concat([pad, zeros((2, ), dtype="int32")], axis=0)
                unsqueezed_dim = [1]
1483
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1484
    else:
1485
        pad = list(pad)
L
littletomatodonkey 已提交
1486 1487 1488 1489 1490
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1491
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1492 1493 1494
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1495
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1496 1497 1498 1499 1500
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1501
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1502 1503 1504
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1505
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1506

J
Jiabin Yang 已提交
1507
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1508
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1509 1510 1511
            pad = pad.numpy().tolist()
        out = _C_ops.final_state_pad3d(x, pad, mode, value, data_format)
    else:
1512
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1513 1514
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1515 1516 1517
            out = _C_ops.pad3d(x, "paddings", pad, "mode", mode, "value", value,
                               "data_format", data_format, "name", name)
        else:
J
Jiabin Yang 已提交
1518 1519 1520 1521 1522 1523 1524
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1525

J
Jiabin Yang 已提交
1526
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1527

J
Jiabin Yang 已提交
1528 1529
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1530 1531 1532 1533
            helper.append_op(type='pad3d',
                             inputs=inputs,
                             outputs={"Out": out},
                             attrs=attrs)
L
littletomatodonkey 已提交
1534 1535

    if len(unsqueezed_dim) != 0:
1536
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1537 1538 1539 1540

    return out


1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
        data_format(str): An string from: "NHWC", "NCHW". Specify the data format of
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

    Returns:Tensor,padded with 0 according to pad and data type is same as input.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

    return pad(x,
               pad=padding,
               mode='constant',
               value=0,
               data_format=data_format,
               name=name)


Y
Yang Zhang 已提交
1581
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1582
    """
Y
Yang Zhang 已提交
1583
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1584 1585 1586 1587

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
Y
Yang Zhang 已提交
1588
        axis (int): Dimension of vectors to compute cosine similarity. Default is 1.
L
littletomatodonkey 已提交
1589 1590
        eps(float): Small value to avoid division by zero. Default is 1e-8.
                    
Y
Yang Zhang 已提交
1591
    Returns: a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1592 1593 1594 1595
    Return Type: Tensor

    Examples:
        .. code-block:: text
1596

L
littletomatodonkey 已提交
1597 1598 1599 1600 1601 1602 1603 1604 1605
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1606
                axis = 1
L
littletomatodonkey 已提交
1607 1608 1609 1610 1611
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1612

L
littletomatodonkey 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621
            import paddle
            import paddle.nn as nn
            import numpy as np

            np.random.seed(0)
            x1 = np.random.rand(2,3)
            x2 = np.random.rand(2,3)
            x1 = paddle.to_tensor(x1)
            x2 = paddle.to_tensor(x2)
Y
Yang Zhang 已提交
1622
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1623
            print(result)
L
littletomatodonkey 已提交
1624 1625 1626
            # [0.99806249 0.9817672  0.94987036]
            
    """
1627 1628 1629
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1630
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1631 1632
    cos_sim = w12 / n12
    return cos_sim
1633 1634 1635


def linear(x, weight, bias=None, name=None):
1636
    r"""
1637

1638 1639
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1640 1641 1642

    .. math::

1643
        Out = XW + b
1644

1645
    where :math:`W` is the weight and :math:`b` is the bias.
1646

1647 1648 1649 1650 1651 1652 1653
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` , 
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1654

1655 1656 1657 1658 1659 1660 1661
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1662 1663

    Returns:
1664 1665
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1666 1667 1668 1669 1670 1671

    Examples:
        .. code-block:: python
          
          import paddle
          
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1685
    """
J
Jiabin Yang 已提交
1686
    if in_dygraph_mode():
1687
        #TODO(jiabin): using addmm for fast forward route
1688
        return _C_ops.final_state_linear(x, weight, bias)
1689
    else:
J
Jiabin Yang 已提交
1690 1691 1692
        if _in_legacy_dygraph():
            pre_bias = _C_ops.matmul_v2(x, weight, 'trans_x', False, 'trans_y',
                                        False)
1693

J
Jiabin Yang 已提交
1694 1695
            if bias is None:
                return pre_bias
1696

J
Jiabin Yang 已提交
1697
            return _C_ops.elementwise_add(pre_bias, bias)
1698
        else:
J
Jiabin Yang 已提交
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

            check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(dtype, 'dtype', ['float16', 'float32', 'float64'],
                        'linear')

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1710 1711 1712 1713
            helper.append_op(type='matmul_v2',
                             inputs=inputs,
                             outputs={'Out': tmp},
                             attrs=attrs)
J
Jiabin Yang 已提交
1714 1715
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1716 1717 1718 1719 1720 1721 1722
                helper.append_op(type='elementwise_add',
                                 inputs={
                                     'X': [tmp],
                                     'Y': [bias]
                                 },
                                 outputs={'Out': [res]},
                                 attrs={'axis': len(x.shape) - 1})
J
Jiabin Yang 已提交
1723 1724 1725
            else:
                res = tmp
            return res
1726 1727 1728


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1729
    r"""
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
    Label smoothing is a mechanism to regularize the classifier layer and is called
    label-smoothing regularization (LSR).

    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1781
            print(output)
1782 1783 1784 1785
            
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1786 1787 1788
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")

1789 1790 1791 1792
    if in_dygraph_mode():
        return _C_ops.final_state_label_smooth(label, prior_dist,
                                               float(epsilon))

1793
    elif paddle.in_dynamic_mode():
W
wanghuancoder 已提交
1794
        return _C_ops.label_smooth(label, prior_dist, 'epsilon', float(epsilon))
1795 1796 1797 1798 1799 1800 1801

    check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                             'label_smooth')

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1802 1803 1804 1805 1806 1807 1808
    helper.append_op(type="label_smooth",
                     inputs={
                         "X": label,
                         "PriorDist": prior_dist
                     } if prior_dist else {"X": label},
                     outputs={"Out": smooth_label},
                     attrs={"epsilon": float(epsilon)})
1809
    return smooth_label
1810 1811


G
Guoxia Wang 已提交
1812
def class_center_sample(label, num_classes, num_samples, group=None):
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
    The process of sampling subset class centers is straightforward: 

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly 
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
    
    .. hint::
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive 
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
1829

1830 1831
        The API supports CPU, single GPU and multi GPU.

1832 1833 1834 1835
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

1836
    Args:
G
Guoxia Wang 已提交
1837 1838
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
1839
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
1840
        num_samples (int): A positive integer to specify the number of class center to sample.
1841 1842 1843
        group (Group, optional): The group instance return by paddle.distributed.new_group 
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
1844 1845 1846 1847 1848 1849 1850 1851

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1852
        :name: code-example1
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
1875
        :name: code-example2
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
        
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
1916 1917 1918 1919 1920 1921 1922
    if not (group == False or group is None or hasattr(group, 'is_member')):
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
             (got group: {})'.format(group))
        return

    if hasattr(group, 'is_member') and not group.is_member():
1923 1924
        return

1925
    ring_id = 0
1926 1927
    rank = 0
    nranks = 1
1928 1929 1930 1931 1932 1933 1934
    if group != False:
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
            rank = global_rank if group is None else group.get_group_rank(
                global_rank)
            nranks = parallel_env.world_size if group is None else group.nranks
1935 1936 1937 1938 1939 1940

    if num_samples > num_classes:
        raise ValueError(
            'Expected num_samples less than or equal to {}, got num_samples {}'.
            format(num_classes, num_samples))

G
Guoxia Wang 已提交
1941 1942 1943
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
1944
    if label_size != -1 and label_size < 1:
G
Guoxia Wang 已提交
1945
        raise ValueError('Expected label_size > 0 \
1946
             (got label_size: {})'.format(label_size))
G
Guoxia Wang 已提交
1947 1948 1949 1950

    label_dims = len(list(label.shape))
    if label_dims != 1:
        raise ValueError('Expected label_dims == 1 \
1951
             (got label_dims: {})'.format(label_dims))
G
Guoxia Wang 已提交
1952 1953

    seed = None
1954 1955 1956
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

Z
zhiboniu 已提交
1957
    if in_dynamic_mode():
1958
        remapped_label, sampled_class_center = _C_ops.class_center_sample(
1959
            label, 'num_classes', num_classes, 'num_samples', num_samples,
1960 1961
            'ring_id', ring_id, 'nranks', nranks, 'rank', rank, 'fix_seed', seed
            is not None, 'seed', seed if seed is not None else 0)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
        return remapped_label, sampled_class_center

    check_variable_and_dtype(label, 'label', ['int64', 'int32'],
                             'class_center_sample')
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
        dtype=label.dtype)
    sampled_class_center = helper.create_variable_for_type_inference(
        dtype=label.dtype)
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
    helper.append_op(type=op_type,
                     inputs={'Label': label},
                     outputs={
                         'RemappedLabel': remapped_label,
                         'SampledLocalClassCenter': sampled_class_center
                     },
                     attrs={
                         'num_classes': num_classes,
                         'num_samples': num_samples,
                         'ring_id': ring_id,
                         'nranks': nranks,
                         'rank': rank,
                         'fix_seed': seed is not None,
                         'seed': seed if seed is not None else 0
                     })
1987
    return remapped_label, sampled_class_center
X
xiaoting 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014


def fold(x,
         output_sizes,
         kernel_sizes,
         strides=1,
         paddings=0,
         dilations=1,
         name=None):
    r"""
    
    This Op is used to combines an array of sliding local blocks into a large containing
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each 
    combined value in the resulting large tensor by summing all values from all containing blocks. 


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
        H_out &= output_size[0]
        W_out &= output_size[1]
        C_out &= C_in / kernel\_sizes[0] / kernel\_sizes[1]

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2015
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2016
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2017
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2018
                                  or an integer k treated as [k, k].
X
xiaoting 已提交
2019
        strides(int|list|tuple):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2020 2021
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
X
xiaoting 已提交
2022
        paddings(int|list|tuple):       The paddings of each dimension, should be
X
xiaoting 已提交
2023 2024 2025 2026 2027 2028
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
X
xiaoting 已提交
2029
        dilations(int|list|tuple):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2048 2049 2050
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

    assert len(x.shape) == 3, \
            "input should be the format of [N, C, L]"

X
xiaoting 已提交
2061 2062 2063
    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

X
xiaoting 已提交
2064 2065 2066
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
X
xiaoting 已提交
2067 2068
        assert _is_list_or_turple_(output_sizes) and (len(output_sizes) == 2), \
            "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2069 2070 2071 2072

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
X
xiaoting 已提交
2073 2074
        assert _is_list_or_turple_(kernel_sizes) and (len(kernel_sizes) == 2), \
            "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2075 2076 2077 2078

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
X
xiaoting 已提交
2079 2080
        assert _is_list_or_turple_(strides) and (len(strides) == 2), \
            "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2081 2082 2083 2084

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
X
xiaoting 已提交
2085 2086
        assert _is_list_or_turple_(dilations) and (len(dilations) == 2), \
            "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
            "of 2 or 4 integers")

X
xiaoting 已提交
2104 2105 2106 2107 2108 2109
    if in_dynamic_mode():
        out = _C_ops.fold(x, "output_sizes", output_sizes, "kernel_sizes",
                          kernel_sizes, "strides", strides, "paddings",
                          paddings, "dilations", dilations)
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
        helper.append_op(type="fold",
                         inputs={"X": x},
                         outputs={"Y": out},
                         attrs={
                             "output_sizes": output_sizes,
                             "kernel_sizes": kernel_sizes,
                             "strides": strides,
                             "paddings": paddings,
                             "dilations": dilations
                         })
X
xiaoting 已提交
2120
    return out