device_worker.py 6.1 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
__all__ = ['DeviceWorker', 'Hogwild', 'DownpourSGD']

17 18

class DeviceWorker(object):
X
xjqbest 已提交
19 20
    """
    DeviceWorker is a abstract class, which generates worker desc.
21 22
    This class is an inner class that we do computation logics within
    the implementation. For example, execution of a program or a graph.
X
xjqbest 已提交
23
    """
24

25
    def __init__(self):
X
xjqbest 已提交
26 27 28
        """
        Init.
        """
D
dongdaxiang 已提交
29
        self.program_ = None
30 31
        self.infer_ = None

32 33 34 35 36 37 38
    def _set_infer(self, infer=False):
        """
        set inference flag for current device worker
        
        Args:
            infer(bool): whether to do inference
        """
39
        self.infer_ = infer
D
dongdaxiang 已提交
40

41
    def _set_fleet_desc(self, fleet_desc):
X
xjqbest 已提交
42 43 44 45 46 47
        """
        Set fleet desc.

        Args:
            fleet_desc(PSParameter): pslib.PSParameter object
        """
D
dongdaxiang 已提交
48 49
        self.fleet_desc_ = fleet_desc

50
    def _set_program(self, program):
X
xjqbest 已提交
51 52 53 54 55 56
        """
        Set program.

        Args:
            program(Program): a Program object
        """
D
dongdaxiang 已提交
57
        self.program_ = program
58

59
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
60 61 62 63 64 65 66 67 68
        """
        Generator worker desc.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        raise NotImplementedError(
            "DeviceWorker does not implement gen_worker_desc, "
            "please use Hogwild or DownpourSGD, etc.")
69 70 71


class Hogwild(DeviceWorker):
X
xjqbest 已提交
72 73 74 75
    """
    Hogwild is a kind of SGD algorithm.

    """
76

77
    def __init__(self):
X
xjqbest 已提交
78 79 80
        """
        Init.
        """
81 82
        super(Hogwild, self).__init__()

83
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
84 85 86 87 88 89
        """
        Generator worker desc, which device worker is HogwildWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
90
        trainer_desc.device_worker_name = "HogwildWorker"
91 92 93
        if self.infer_:
            # just ignore feed op for inference model
            trainer_desc.hogwild_param.skip_ops.extend(["feed"])
94 95


D
dongdaxiang 已提交
96
class DownpourSGD(DeviceWorker):
X
xjqbest 已提交
97 98 99
    """
    DownpourSGD is a kind of distributed SGD algorithm.
    """
100

101
    def __init__(self):
X
xjqbest 已提交
102 103
        """
        Init.
104
        initialize downpourSGD device worker
X
xjqbest 已提交
105
        """
D
dongdaxiang 已提交
106
        super(DownpourSGD, self).__init__()
107

108
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
109 110 111 112 113 114
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
X
fix bug  
xjqbest 已提交
115
        dense_table_set = set()
D
dongdaxiang 已提交
116 117 118
        program_id = str(id(self.program_))
        if self.program_ == None:
            print("program of current device worker is not configured")
119
            exit(-1)
D
dongdaxiang 已提交
120 121
        opt_info = self.program_._fleet_opt
        program_configs = opt_info["program_configs"]
122
        downpour = trainer_desc.downpour_param
D
dongdaxiang 已提交
123

D
dongdaxiang 已提交
124 125
        for pid in program_configs:
            if pid == program_id:
D
dongdaxiang 已提交
126 127 128 129 130 131
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
X
xjqbest 已提交
132
                    dense_table_set.add(i)
D
dongdaxiang 已提交
133 134 135 136
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
X
fix bug  
xjqbest 已提交
137
                    dense_table_set.add(i)
D
dongdaxiang 已提交
138
                break
139

140 141 142 143 144 145
        trainer_desc.device_worker_name = "DownpourWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        for i in self.fleet_desc_.trainer_param.dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
146
                dense_table.dense_value_name.extend(i.dense_variable_name)
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                dense_table.table_id = \
                    i.table_id
        sparse_table = downpour.sparse_table.add()
        sparse_table.table_id = \
                    self.fleet_desc_.trainer_param.sparse_table[0].table_id
        sparse_table.sparse_key_name.extend(
            self.fleet_desc_.trainer_param.sparse_table[0].slot_key)
        sparse_table.sparse_value_name.extend(
            self.fleet_desc_.trainer_param.sparse_table[0].slot_value)
        sparse_table.sparse_grad_name.extend(
            self.fleet_desc_.trainer_param.sparse_table[0].slot_gradient)
        sparse_table.emb_dim = \
                    self.fleet_desc_.server_param.downpour_server_param.downpour_table_param[
                        0].accessor.fea_dim - 2
        sparse_table.fea_dim = sparse_table.emb_dim + 2
        # TODO(guru4elephant): hard code here, need to improve
        sparse_table.label_var_name = "click"

X
fix bug  
xjqbest 已提交
165 166 167 168
        for i in self.fleet_desc_.trainer_param.dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
169
                dense_table.dense_value_name.extend(i.dense_variable_name)
X
fix bug  
xjqbest 已提交
170 171 172
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
                downpour.skip_ops.extend(self.fleet_desc_.trainer_param.skip_op)
173 174 175
        if self.infer_:
            downpour.push_dense = False
            downpour.push_sparse = False
X
fix bug  
xjqbest 已提交
176

177 178

class DeviceWorkerFactory(object):
179
    def _create_device_worker(self, worker_type):
180 181
        classname = worker_type.capitalize()
        return globals()[classname]()