concat_op_xpu.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/concat_op.h"

#include <memory>
#include <string>
#include <vector>

#ifdef PADDLE_WITH_MKLDNN
#include <paddle/fluid/platform/mkldnn_helper.h>
#endif

#ifdef PADDLE_WITH_XPU

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class ConcatXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
    framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
    int axis = ctx.Attr<int>("axis");
    PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
                                           "The input should not be null."));
    PADDLE_ENFORCE_NE(ctx.HasInput("AxisTensor"), true,
                      platform::errors::InvalidArgument(
                          "XPU donot surpport AxisTensor for now"));
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
    PADDLE_ENFORCE_GE(
        axis, 0, platform::errors::InvalidArgument("concat: axis shoud >= 0!"));
    PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(),
                      platform::errors::InvalidArgument(
                          "concat: axis shoud < ins[0]->dims()!"));
    auto place = ctx.GetPlace();
    out->mutable_data<T>(place);
    std::vector<int> choose_idx;
    int n = 0;
    for (unsigned int i = 0; i < ins.size(); ++i) {
      if (ins[i] && ins[i]->numel() > 0) {
        choose_idx.push_back(i);
        n++;
      }
    }
    PADDLE_ENFORCE_LE(n, 8, platform::errors::InvalidArgument(
                                "XPU only surpport at most 8 tensors for now"));
    PADDLE_ENFORCE_GT(
        n, 0, platform::errors::InvalidArgument("No tensor need concat?"));
    int h = 1;
    int w_except_axis = 1;
    for (int i = 0; i < axis; ++i) {
      h *= (ins[choose_idx[0]]->dims())[i];
    }
    for (int i = axis + 1; i < ins[0]->dims().size(); ++i) {
      w_except_axis *= (ins[choose_idx[0]]->dims())[i];
    }
    for (int i = 1; i < n; ++i) {
      int hh = 1;
      int ww = 1;
      for (int j = 0; j < axis; ++j) {
        hh *= (ins[choose_idx[i]]->dims())[j];
      }
      for (int j = axis + 1; j < ins[i]->dims().size(); ++j) {
        ww *= (ins[choose_idx[i]]->dims())[j];
      }
      PADDLE_ENFORCE_EQ(hh, h, platform::errors::InvalidArgument(
                                   "concat: h should be eual!"));
      PADDLE_ENFORCE_EQ(ww, w_except_axis,
                        platform::errors::InvalidArgument(
                            "concat: w should be eual except for axis!"));
    }
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::unique_ptr<int[]> in_w_host(new int[n]);
    std::unique_ptr<const float* []> ptrs(new const float*[n]);
    for (int i = 0; i < n; ++i) {
      ptrs[i] = ins[choose_idx[i]]->data<T>();
      in_w_host[i] = w_except_axis * (ins[choose_idx[i]]->dims())[axis];
    }
    int r =
        xpu::concat<float>(dev_ctx.x_context(), h, (const int*)in_w_host.get(),
                           n, (const float**)ptrs.get(), out->data<T>());
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r));
  }
};
template <typename DeviceContext, typename T>
class ConcatGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_grad =
        ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
    auto outs =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    {
      auto dx = outs;
      auto x = ins;
      for (size_t i = 0; i < dx.size(); ++i) {
        if (dx[i] != nullptr) {
          dx[i]->set_lod(x[i]->lod());
        }
      }
    }
    PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
                                           "The input should not be null."));
    auto axis = ctx.Attr<int>("axis");
    if (ctx.HasInput("AxisTensor")) {
      auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
      axis = GetDataFromTensor<int>(axis_tensor)[0];
    }
    axis = ComputeAxis(static_cast<int64_t>(axis),
                       static_cast<int64_t>(ins[0]->dims().size()));
    // get output tensor that the name is not kEmptyVarName
    std::vector<framework::Tensor*> outputs;
    for (size_t j = 0; j < outs.size(); ++j) {
      if (out_var_names[j] != framework::kEmptyVarName &&
          outs[j]->numel() != 0UL) {
        outs[j]->mutable_data<T>(ctx.GetPlace());
        outputs.push_back(outs[j]);
      } else {
        outputs.push_back(nullptr);
      }
    }
    PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument(
                                   "concat_grad: axis shoud >= 0!"));
    PADDLE_ENFORCE_LT(axis, out_grad->dims().size(),
                      platform::errors::InvalidArgument(
                          "concat_grad: axis shoud < ins[0]->dims()!"));
    auto out_grad_stride = framework::stride_numel(out_grad->dims());
    int n = outputs.size();
    PADDLE_ENFORCE_LE(n, 16,
                      platform::errors::InvalidArgument(
                          "XPU only surpport at most 16 tensors for now"));
    int h = out_grad_stride[0] / out_grad_stride[axis];
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    std::unique_ptr<int[]> in_w_host(new int[n]);
    std::unique_ptr<float* []> ptrs(new float*[n]);
    for (int i = 0; i < n; ++i) {
      auto out_stride = framework::stride_numel(outputs[i]->dims());
      ptrs[i] = outputs[i]->data<T>();
      in_w_host[i] = out_stride[axis];
    }
    int r = xpu::concat_grad(dev_ctx.x_context(), h, in_w_host.get(), n,
                             reinterpret_cast<float**>(ptrs.get()),
                             out_grad->data<T>());
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External(
            "XPU API return wrong value[%d], please check whether "
            "Baidu Kunlun Card is properly installed.",
            r));
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
    concat, ops::ConcatXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    concat_grad,
    ops::ConcatGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif