batch_norm_grad_kernel.h 4.2 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <string>
#include "paddle/phi/core/dense_tensor.h"

namespace phi {

template <typename T, typename Context>
void BatchNormGradRawKernel(const Context& dev_ctx,
                            const DenseTensor& x,
                            const DenseTensor& scale,
                            const DenseTensor& bias,
H
hong 已提交
27 28
                            paddle::optional<const DenseTensor&> mean,
                            paddle::optional<const DenseTensor&> variance,
H
hong 已提交
29 30 31
                            const DenseTensor& saved_mean,
                            const DenseTensor& saved_variance,
                            paddle::optional<const DenseTensor&> reserve_space,
H
hong 已提交
32
                            const DenseTensor& y_grad,
H
hong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
                            float momentum,
                            float epsilon,
                            const std::string& data_layout,
                            bool is_test,
                            bool use_global_stats,
                            bool trainable_statistics,
                            bool fuse_with_relu,
                            bool is_inplace,
                            DenseTensor* x_grad,
                            DenseTensor* scale_grad,
                            DenseTensor* bias_grad);

template <typename T, typename Context>
void BatchNormGradKernel(const Context& dev_ctx,
                         const DenseTensor& x,
                         const DenseTensor& scale,
                         const DenseTensor& bias,
H
hong 已提交
50 51
                         paddle::optional<const DenseTensor&> mean,
                         paddle::optional<const DenseTensor&> variance,
H
hong 已提交
52 53 54
                         const DenseTensor& saved_mean,
                         const DenseTensor& saved_variance,
                         paddle::optional<const DenseTensor&> reserve_space,
H
hong 已提交
55
                         const DenseTensor& y_grad,
H
hong 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
                         float momentum,
                         float epsilon,
                         const std::string& data_layout,
                         bool is_test,
                         bool use_global_stats,
                         bool trainable_statistics,
                         bool fuse_with_relu,
                         DenseTensor* x_grad,
                         DenseTensor* scale_grad,
                         DenseTensor* bias_grad);

template <typename T, typename Context>
void BatchNormDoubleGradKernel(const Context& dev_ctx,
                               const DenseTensor& x_grad_grad,
                               const DenseTensor& scale_grad_grad,
                               const DenseTensor& bias_grad_grad,
                               const DenseTensor& y_grad,
                               const DenseTensor& x,
                               const DenseTensor& scale,
                               const DenseTensor& saved_mean,
                               const DenseTensor& saved_variance,
                               paddle::optional<const DenseTensor&> mean,
                               paddle::optional<const DenseTensor&> variance,
                               float momentum,
                               float epsilon,
                               const std::string& data_layout,
                               bool is_test,
                               bool use_global_stats,
                               bool trainable_statistics,
                               bool fuse_with_relu,
                               DenseTensor* x_grad,
                               DenseTensor* scale_grad,
                               DenseTensor* y_grad_grad);

}  // namespace phi