fleet_py.cc 12.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <fcntl.h>

#ifdef _POSIX_C_SOURCE
#undef _POSIX_C_SOURCE
#endif

#ifdef _XOPEN_SOURCE
#undef _XOPEN_SOURCE
#endif

#include "paddle/fluid/pybind/fleet_py.h"

#include <map>
#include <memory>
#include <string>
#include <vector>

31
#include "paddle/fluid/distributed/common/sparse_sharding_merge.h"
T
tangwei12 已提交
32 33
#include "paddle/fluid/distributed/communicator_common.h"
#include "paddle/fluid/distributed/fleet.h"
1
123malin 已提交
34 35
#include "paddle/fluid/distributed/index_dataset/index_sampler.h"
#include "paddle/fluid/distributed/index_dataset/index_wrapper.h"
T
tangwei12 已提交
36 37
#include "paddle/fluid/distributed/service/communicator.h"
#include "paddle/fluid/distributed/service/env.h"
S
seemingwang 已提交
38 39
#include "paddle/fluid/distributed/service/graph_brpc_client.h"
#include "paddle/fluid/distributed/service/graph_py_service.h"
T
tangwei12 已提交
40 41 42 43 44 45 46
#include "paddle/fluid/distributed/service/heter_client.h"

namespace py = pybind11;
using paddle::distributed::CommContext;
using paddle::distributed::Communicator;
using paddle::distributed::FleetWrapper;
using paddle::distributed::HeterClient;
S
seemingwang 已提交
47 48 49 50 51
using paddle::distributed::GraphPyService;
using paddle::distributed::GraphNode;
using paddle::distributed::GraphPyServer;
using paddle::distributed::GraphPyClient;
using paddle::distributed::FeatureNode;
52
using paddle::distributed::ShardingMerge;
T
tangwei12 已提交
53 54 55 56 57 58 59 60

namespace paddle {
namespace pybind {
void BindDistFleetWrapper(py::module* m) {
  py::class_<FleetWrapper, std::shared_ptr<FleetWrapper>>(*m,
                                                          "DistFleetWrapper")
      .def(py::init([]() { return FleetWrapper::GetInstance(); }))
      .def("load_sparse", &FleetWrapper::LoadSparseOnServer)
T
Thunderbrook 已提交
61 62
      .def("load_model", &FleetWrapper::LoadModel)
      .def("load_one_table", &FleetWrapper::LoadModelOneTable)
T
tangwei12 已提交
63 64 65 66 67 68 69 70 71 72 73
      .def("init_server", &FleetWrapper::InitServer)
      .def("run_server",
           (uint64_t (FleetWrapper::*)(void)) & FleetWrapper::RunServer)
      .def("run_server", (uint64_t (FleetWrapper::*)(          // NOLINT
                             const std::string&, uint32_t)) &  // NOLINT
                             FleetWrapper::RunServer)
      .def("init_worker", &FleetWrapper::InitWorker)
      .def("push_dense_params", &FleetWrapper::PushDenseParamSync)
      .def("pull_dense_params", &FleetWrapper::PullDenseVarsSync)
      .def("save_all_model", &FleetWrapper::SaveModel)
      .def("save_one_model", &FleetWrapper::SaveModelOneTable)
74
      .def("recv_and_save_model", &FleetWrapper::RecvAndSaveTable)
T
tangwei12 已提交
75 76 77
      .def("sparse_table_stat", &FleetWrapper::PrintTableStat)
      .def("stop_server", &FleetWrapper::StopServer)
      .def("stop_worker", &FleetWrapper::FinalizeWorker)
78 79
      .def("barrier", &FleetWrapper::BarrierWithTable)
      .def("shrink_sparse_table", &FleetWrapper::ShrinkSparseTable);
80
}
T
tangwei12 已提交
81 82 83 84 85 86 87 88 89 90 91

void BindPSHost(py::module* m) {
  py::class_<distributed::PSHost>(*m, "PSHost")
      .def(py::init<const std::string&, uint32_t, uint32_t>())
      .def("serialize_to_string", &distributed::PSHost::serialize_to_string)
      .def("parse_from_string", &distributed::PSHost::parse_from_string)
      .def("to_uint64", &distributed::PSHost::serialize_to_uint64)
      .def("from_uint64", &distributed::PSHost::parse_from_uint64)
      .def("to_string", &distributed::PSHost::to_string);
}

92 93 94 95 96 97
void BindSparseShardingTools(py::module* m) {
  py::class_<ShardingMerge>(*m, "ShardingMerge")
      .def(py::init<>())
      .def("merge", &ShardingMerge::Merge);
}

T
tangwei12 已提交
98 99 100 101 102
void BindCommunicatorContext(py::module* m) {
  py::class_<CommContext>(*m, "CommContext")
      .def(
          py::init<const std::string&, const std::vector<std::string>&,
                   const std::vector<std::string>&, const std::vector<int64_t>&,
103 104
                   const std::vector<std::string>&, int, bool, bool, bool, int,
                   bool>())
T
tangwei12 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
      .def("var_name", [](const CommContext& self) { return self.var_name; })
      .def("trainer_id",
           [](const CommContext& self) { return self.trainer_id; })
      .def("table_id", [](const CommContext& self) { return self.table_id; })
      .def("split_varnames",
           [](const CommContext& self) { return self.splited_varnames; })
      .def("split_endpoints",
           [](const CommContext& self) { return self.epmap; })
      .def("sections",
           [](const CommContext& self) { return self.height_sections; })
      .def("aggregate", [](const CommContext& self) { return self.merge_add; })
      .def("is_sparse", [](const CommContext& self) { return self.is_sparse; })
      .def("is_distributed",
           [](const CommContext& self) { return self.is_distributed; })
      .def("origin_varnames",
           [](const CommContext& self) { return self.origin_varnames; })
121 122
      .def("is_tensor_table",
           [](const CommContext& self) { return self.is_tensor_table; })
T
tangwei12 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
      .def("__str__", [](const CommContext& self) { return self.print(); });
}

using paddle::distributed::AsyncCommunicator;
using paddle::distributed::GeoCommunicator;
using paddle::distributed::RecvCtxMap;
using paddle::distributed::RpcCtxMap;
using paddle::distributed::SyncCommunicator;
using paddle::framework::Scope;

void BindDistCommunicator(py::module* m) {
  // Communicator is already used by nccl, change to DistCommunicator
  py::class_<Communicator, std::shared_ptr<Communicator>>(*m,
                                                          "DistCommunicator")
      .def(py::init([](const std::string& mode, const std::string& dist_desc,
                       const std::vector<std::string>& host_sign_list,
                       const RpcCtxMap& send_ctx, const RecvCtxMap& recv_ctx,
                       Scope* param_scope,
                       std::map<std::string, std::string>& envs) {
        if (mode == "ASYNC") {
          Communicator::InitInstance<AsyncCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else if (mode == "SYNC") {
          Communicator::InitInstance<SyncCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else if (mode == "GEO") {
          Communicator::InitInstance<GeoCommunicator>(
              send_ctx, recv_ctx, dist_desc, host_sign_list, param_scope, envs);
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "unsuported communicator MODE"));
        }
        return Communicator::GetInstantcePtr();
      }))
      .def("stop", &Communicator::Stop)
      .def("start", &Communicator::Start)
      .def("push_sparse_param", &Communicator::RpcSendSparseParam)
      .def("is_running", &Communicator::IsRunning)
      .def("init_params", &Communicator::InitParams);
  //  .def("recv", &Communicator::RecvNoBarrier);
}

void BindHeterClient(py::module* m) {
  py::class_<HeterClient, std::shared_ptr<HeterClient>>(*m, "HeterClient")
      .def(py::init(
          [](const std::vector<std::string>& endpoint, const int& trainer_id) {
            return HeterClient::GetInstance(endpoint, trainer_id);
          }))
      .def("stop", &HeterClient::Stop);
}

S
seemingwang 已提交
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
void BindGraphNode(py::module* m) {
  py::class_<GraphNode>(*m, "GraphNode")
      .def(py::init<>())
      .def("get_id", &GraphNode::get_id)
      .def("get_feature", &GraphNode::get_feature);
}
void BindGraphPyFeatureNode(py::module* m) {
  py::class_<FeatureNode>(*m, "FeatureNode")
      .def(py::init<>())
      .def("get_id", &GraphNode::get_id)
      .def("get_feature", &GraphNode::get_feature);
}

void BindGraphPyService(py::module* m) {
  py::class_<GraphPyService>(*m, "GraphPyService").def(py::init<>());
}

void BindGraphPyServer(py::module* m) {
  py::class_<GraphPyServer>(*m, "GraphPyServer")
      .def(py::init<>())
      .def("start_server", &GraphPyServer::start_server)
      .def("set_up", &GraphPyServer::set_up)
      .def("add_table_feat_conf", &GraphPyServer::add_table_feat_conf);
}
void BindGraphPyClient(py::module* m) {
  py::class_<GraphPyClient>(*m, "GraphPyClient")
      .def(py::init<>())
      .def("load_edge_file", &GraphPyClient::load_edge_file)
      .def("load_node_file", &GraphPyClient::load_node_file)
      .def("set_up", &GraphPyClient::set_up)
      .def("add_table_feat_conf", &GraphPyClient::add_table_feat_conf)
      .def("pull_graph_list", &GraphPyClient::pull_graph_list)
      .def("start_client", &GraphPyClient::start_client)
      .def("batch_sample_neighboors", &GraphPyClient::batch_sample_neighboors)
      .def("random_sample_nodes", &GraphPyClient::random_sample_nodes)
      .def("stop_server", &GraphPyClient::stop_server)
      .def("get_node_feat",
           [](GraphPyClient& self, std::string node_type,
              std::vector<uint64_t> node_ids,
              std::vector<std::string> feature_names) {
             auto feats =
                 self.get_node_feat(node_type, node_ids, feature_names);
             std::vector<std::vector<py::bytes>> bytes_feats(feats.size());
             for (int i = 0; i < feats.size(); ++i) {
               for (int j = 0; j < feats[i].size(); ++j) {
                 bytes_feats[i].push_back(py::bytes(feats[i][j]));
               }
             }
             return bytes_feats;
           })
      .def("bind_local_server", &GraphPyClient::bind_local_server);
}

1
123malin 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
using paddle::distributed::TreeIndex;
using paddle::distributed::IndexWrapper;
using paddle::distributed::IndexNode;

void BindIndexNode(py::module* m) {
  py::class_<IndexNode>(*m, "IndexNode")
      .def(py::init<>())
      .def("id", [](IndexNode& self) { return self.id(); })
      .def("is_leaf", [](IndexNode& self) { return self.is_leaf(); })
      .def("probability", [](IndexNode& self) { return self.probability(); });
}

void BindTreeIndex(py::module* m) {
  py::class_<TreeIndex, std::shared_ptr<TreeIndex>>(*m, "TreeIndex")
      .def(py::init([](const std::string name, const std::string path) {
        auto index_wrapper = IndexWrapper::GetInstancePtr();
        index_wrapper->insert_tree_index(name, path);
        return index_wrapper->get_tree_index(name);
      }))
      .def("height", [](TreeIndex& self) { return self.Height(); })
      .def("branch", [](TreeIndex& self) { return self.Branch(); })
      .def("total_node_nums",
           [](TreeIndex& self) { return self.TotalNodeNums(); })
      .def("emb_size", [](TreeIndex& self) { return self.EmbSize(); })
      .def("get_all_leafs", [](TreeIndex& self) { return self.GetAllLeafs(); })
      .def("get_nodes",
           [](TreeIndex& self, const std::vector<uint64_t>& codes) {
             return self.GetNodes(codes);
           })
      .def("get_layer_codes",
           [](TreeIndex& self, int level) { return self.GetLayerCodes(level); })
      .def("get_ancestor_codes",
           [](TreeIndex& self, const std::vector<uint64_t>& ids, int level) {
             return self.GetAncestorCodes(ids, level);
           })
      .def("get_children_codes",
           [](TreeIndex& self, uint64_t ancestor, int level) {
             return self.GetChildrenCodes(ancestor, level);
           })
      .def("get_travel_codes",
           [](TreeIndex& self, uint64_t id, int start_level) {
             return self.GetTravelCodes(id, start_level);
           });
}

void BindIndexWrapper(py::module* m) {
  py::class_<IndexWrapper, std::shared_ptr<IndexWrapper>>(*m, "IndexWrapper")
      .def(py::init([]() { return IndexWrapper::GetInstancePtr(); }))
      .def("insert_tree_index", &IndexWrapper::insert_tree_index)
      .def("get_tree_index", &IndexWrapper::get_tree_index)
      .def("clear_tree", &IndexWrapper::clear_tree);
}

using paddle::distributed::IndexSampler;
using paddle::distributed::LayerWiseSampler;

void BindIndexSampler(py::module* m) {
  py::class_<IndexSampler, std::shared_ptr<IndexSampler>>(*m, "IndexSampler")
      .def(py::init([](const std::string& mode, const std::string& name) {
        if (mode == "by_layerwise") {
          return IndexSampler::Init<LayerWiseSampler>(name);
        } else {
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Unsupported IndexSampler Type!"));
        }
      }))
      .def("init_layerwise_conf", &IndexSampler::init_layerwise_conf)
      .def("init_beamsearch_conf", &IndexSampler::init_beamsearch_conf)
      .def("sample", &IndexSampler::sample);
}

T
tangwei12 已提交
298 299
}  // end namespace pybind
}  // namespace paddle