worker.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import paddle
import numpy as np
import traceback
from collections import namedtuple
from .. import core
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
from ..multiprocess_utils import _cleanup_mmap, CleanupFuncRegistrar, MP_STATUS_CHECK_INTERVAL
from ..framework import in_dygraph_mode
from .flat import _flatten_batch

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
29
import queue
30 31 32 33 34 35 36 37 38

__all__ = ['get_worker_info']


class _IterableDatasetStopIteration(object):
    def __init__(self, worker_id):
        self.worker_id = worker_id


K
Kaipeng Deng 已提交
39 40 41 42
class _ResumeIteration(object):
    pass


43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
class _DatasetKind(object):
    MAP = 0
    ITER = 1

    @staticmethod
    def create_fetcher(kind, dataset, auto_collate_batch, collate_fn,
                       drop_last):
        if kind == _DatasetKind.MAP:
            return _MapDatasetFetcher(dataset, auto_collate_batch, collate_fn,
                                      drop_last)
        elif kind == _DatasetKind.ITER:
            return _IterableDatasetFetcher(dataset, auto_collate_batch,
                                           collate_fn, drop_last)
        else:
            raise NotImplementedError("unknown Dataset kind {}".format(kind))


class ParentWatchDog(object):
    def __init__(self):
        self._parent_pid = os.getppid()
        self._parent_alive = True

    def is_alive(self):
        if self._parent_alive:
            self._parent_alive = os.getppid() == self._parent_pid
        return self._parent_alive


# worker information for each workers, used for splitting data copy
# for IteratorDataset in worker processes.
_worker_info = None


def get_worker_info():
    """
    Get DataLoader worker process information function, this function is
    used to split data copy in worker process for IterableDataset
    (see :code:`paddle.io.IterableDataset`), worker information contains
    following fields:

    :attr:`num_workers`: total worker process number, see `paddle.io.DataLoader`

    :attr:`id`: the worker processs id, count from 0 to :attr:`num_workers - 1`

    :attr:`dataset`: the dataset object in this worker process

    Returns:
        WorkerInfo: an instance of WorkerInfo which contains fields above.

    .. note::
        For more usage and examples, please see :code:`paddle.io.IterableDataset`

    Example:

        .. code-block:: python

            import math
            import paddle
            import numpy as np
            from paddle.io import IterableDataset, DataLoader, get_worker_info

            class SplitedIterableDataset(IterableDataset):
                def __init__(self, start, end):
                    self.start = start
                    self.end = end

                def __iter__(self):
                    worker_info = get_worker_info()
                    if worker_info is None:
                        iter_start = self.start
                        iter_end = self.end
                    else:
                        per_worker = int(
                            math.ceil((self.end - self.start) / float(
                                worker_info.num_workers)))
                        worker_id = worker_info.id
                        iter_start = self.start + worker_id * per_worker
                        iter_end = min(iter_start + per_worker, self.end)

                    for i in range(iter_start, iter_end):
                        yield np.array([i])

            place = paddle.CPUPlace()
            dataset = SplitedIterableDataset(start=2, end=9)
            dataloader = DataLoader(
                dataset,
                places=place,
                num_workers=2,
                batch_size=1,
                drop_last=True)

            for data in dataloader:
                print(data)
            # outputs: [2, 5, 3, 6, 4, 7]

    """
    return _worker_info


class WorkerInfo(object):
    __initialized = False

    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            setattr(self, k, v)
        self.__initialized = True

    def __setattr__(self, key, val):
        if self.__initialized:
            raise RuntimeError("Cannot assign attributes to {} objects".format(
                self.__class__.__name__))
        return super(WorkerInfo, self).__setattr__(key, val)


class _WorkerException(object):
    def __init__(self, worker_id, exc_info=None):
        self.worker_id = worker_id
        exc_info = exc_info or sys.exc_info()
        self.exc_type = exc_info[0]
        self.exc_msg = "".join(traceback.format_exception(*exc_info))

    def reraise(self):
        msg = "DataLoader worker({}) caught {} with message:\n{}".format(
            self.worker_id, self.exc_type.__name__, self.exc_msg)
        if getattr(self.exc_type, "message", None):
            raise self.exc_type(message=msg)
        raise self.exc_type(msg)


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
# The function `_generate_states` is adapted from `numpy.random.SeedSequence`
# from https://github.com/numpy/numpy/blob/main/numpy/random/bit_generator.pyx
# Here is the copyright:

# SeedSequence is derived from Melissa E. O'Neill's C++11 `std::seed_seq`
# implementation, as it has a lot of nice properties that we want.
# https://gist.github.com/imneme/540829265469e673d045
# http://www.pcg-random.org/posts/developing-a-seed_seq-alternative.html

# The MIT License (MIT)

# Copyright (c) 2015 Melissa E. O'Neill
# Copyright (c) 2019 NumPy Developers
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

INIT_A = 0x43b0d7e5
MULT_A = 0x931e8875
INIT_B = 0x8b51f9dd
MULT_B = 0x58f38ded
MIX_MULT_L = 0xca01f9dd
MIX_MULT_R = 0x4973f715
XSHIFT = np.dtype(np.uint32).itemsize * 8 // 2
MASK32 = 0xFFFFFFFF


def _generate_states(base_seed=0, worker_id=0):
    # init hash constant
    hash_const_A = INIT_A
    hash_const_B = INIT_B

    def hash(value):
        nonlocal hash_const_A
        value = (value ^ hash_const_A) & MASK32
        hash_const_A = (hash_const_A * MULT_A) & MASK32
        value = (value * hash_const_A) & MASK32
        value = (value ^ (value >> XSHIFT)) & MASK32
        return value

    def mix(x, y):
        result_x = (MIX_MULT_L * x) & MASK32
        result_y = (MIX_MULT_R * y) & MASK32
        result = (result_x - result_y) & MASK32
        result = (result ^ (result >> XSHIFT)) & MASK32
        return result

    # init entropys with based_seed and worker_id and calculate pool
    entropys = [worker_id, base_seed & MASK32, base_seed >> 32, 0]
    pool = [hash(entropy) for entropy in entropys]

    # mix all bits together
    for i in range(len(pool)):
        for j in range(len(pool)):
            if i != j:
                pool[j] = mix(pool[j], hash(pool[i]))

    states = []
    for p in pool:
        state = (p ^ hash_const_B) & MASK32
        hash_const_B = (hash_const_B * MULT_B) & MASK32
        state = (state * hash_const_B) & MASK32
        state = (state ^ (state >> XSHIFT)) & MASK32
        states.append(state)

    return states


255 256 257 258 259 260 261 262 263 264 265 266 267
def _worker_loop(dataset, dataset_kind, indices_queue, out_queue, done_event,
                 auto_collate_batch, collate_fn, init_fn, worker_id,
                 num_workers, use_shared_memory):
    try:
        # NOTE: [ mmap files clear ] When the child process exits unexpectedly,
        # some shared memory objects may have been applied for but have not yet
        # been put into the inter-process Queue. This part of the object needs
        # to be cleaned up when the process ends.
        CleanupFuncRegistrar.register(_cleanup_mmap)

        # set signal handler
        core._set_process_signal_handler()

268 269 270 271 272 273 274 275 276
        # set different numpy seed for each worker
        try:
            import numpy as np
            import time
        except ImportError:
            pass
        else:
            np.random.seed(_generate_states(int(time.time()), worker_id))

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
        global _worker_info
        _worker_info = WorkerInfo(
            id=worker_id, num_workers=num_workers, dataset=dataset)

        init_exception = None
        try:
            if init_fn is not None:
                init_fn(worker_id)
            fetcher = _DatasetKind.create_fetcher(
                dataset_kind, dataset, auto_collate_batch, collate_fn, True)
        except:
            init_exception = _WorkerException(worker_id)

        iterator_drained = False
        parent_watch_dog = ParentWatchDog()

        while parent_watch_dog.is_alive():
            try:
                data = indices_queue.get(MP_STATUS_CHECK_INTERVAL)
            except queue.Empty:
                continue

K
Kaipeng Deng 已提交
299 300 301 302 303 304 305
            if isinstance(data, _ResumeIteration):
                out_queue.put((data, None, None))
                iterator_drained = False
                fetcher = _DatasetKind.create_fetcher(
                    dataset_kind, dataset, auto_collate_batch, collate_fn, True)
                continue

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
            # None as poison piil, so worker event should be set
            if data is None:
                assert done_event.is_set() or iterator_drained, \
                        "get None when worker done_event set"
                break
            # If worker done event is set but get still get data in
            # indices_queue, remaining data should be get and skipped.
            if done_event.is_set() or iterator_drained:
                continue

            idx, indices = data
            try:
                if init_exception is not None:
                    batch = init_exception
                    init_exception = None
                else:
                    # NOTE: GPU tensor operation is not supported in sub-process
                    #       but default device is GPU in paddle-gpu version, which
                    #       may copy CPU tensor to GPU even if users want to use
                    #       CPU tensor operation, so we add CPUPlace guard here
                    #       to make sure tensor will be operated only on CPU
                    with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
                        batch = fetcher.fetch(indices)
            except Exception as e:
                if isinstance(
                        e, StopIteration) and dataset_kind == _DatasetKind.ITER:
                    out_queue.put(_IterableDatasetStopIteration(worker_id))
                    iterator_drained = True
                else:
                    out_queue.put((idx, _WorkerException(worker_id), None))
            else:
                if isinstance(batch, _WorkerException):
                    out_queue.put((idx, batch, None))
                batch, structure = _flatten_batch(batch)
                if use_shared_memory:
K
Kaipeng Deng 已提交
341 342 343 344 345
                    tensor_list = [
                        core._array_to_share_memory_tensor(b)
                        if isinstance(b, np.ndarray) else b._share_memory()
                        for b in batch
                    ]
346 347 348 349 350 351 352 353 354 355 356 357
                    out_queue.put((idx, tensor_list, structure))
                    core._remove_tensor_list_mmap_fds(tensor_list)
                else:
                    out_queue.put((idx, batch, structure))
    except KeyboardInterrupt:
        # NOTE: Main process will raise KeyboardInterrupt anyways, ignore it in child process
        pass
    except:
        six.reraise(*sys.exc_info())
    finally:
        if use_shared_memory:
            _cleanup_mmap()