multiplex_op.h 4.3 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
20
#include "paddle/memory/memcpy.h"
Y
Yibing Liu 已提交
21 22 23 24

namespace paddle {
namespace operators {

25 26
template <typename Place, typename T>
class MultiplexKernel : public framework::OpKernel {
Y
Yibing Liu 已提交
27 28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto ins = ctx.MultiInput<framework::Tensor>("X");
30
    auto* out = ctx.Output<framework::LoDTensor>("Out");
31

Y
Yibing Liu 已提交
32 33 34 35
    out->mutable_data<T>(ctx.GetPlace());

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto* index = ins[0]->data<T>();
      platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace());
      for (auto i = 0; i < rows; i++) {
        int k = (int)index[i] + 1;
        PADDLE_ENFORCE_LT(k, ins.size(),
                          "index exceeds the number of candidate tensors.");
        memory::Copy(place, out->data<T>() + i * cols, place,
                     ins[k]->data<T>() + i * cols, cols * sizeof(T));
      }
    } else {
#ifndef PADDLE_ONLY_CPU
      // copy index to cpu
      framework::Tensor index_t_cpu;
      index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
      auto* index = index_t_cpu.data<T>();
      auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                        ctx.device_context())
                        .stream();
      platform::GPUPlace place = boost::get<platform::GPUPlace>(ctx.GetPlace());
      for (auto i = 0; i < rows; i++) {
        int k = (int)index[i] + 1;
        PADDLE_ENFORCE_LT(k, ins.size(),
                          "index exceeds the number of candidate tensors.");
        memory::Copy(place, out->data<T>() + i * cols, place,
                     ins[k]->data<T>() + i * cols, cols * sizeof(T), stream);
      }
#endif
Y
Yibing Liu 已提交
64 65 66 67
    }
  }
};

68 69
template <typename Place, typename T>
class MultiplexGradKernel : public framework::OpKernel {
Y
Yibing Liu 已提交
70 71 72 73 74 75
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto ins = ctx.MultiInput<framework::Tensor>("X");
    auto d_ins =
        ctx.MultiOutput<framework::Tensor>(framework::GradVarName("X"));
76 77 78
    for (size_t i = 1; i < d_ins.size(); i++) {
      if (d_ins[i]) {
        d_ins[i]->mutable_data<T>(ctx.GetPlace());
79 80
        auto t = framework::EigenVector<T>::Flatten(*d_ins[i]);
        t.device(ctx.GetEigenDevice<Place>()) = t.constant(static_cast<T>(0));
81
      }
Y
Yibing Liu 已提交
82 83 84 85
    }

    auto rows = ins[1]->dims()[0];
    auto cols = ins[1]->dims()[1];
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    if (platform::is_cpu_place(ctx.GetPlace())) {
      auto* index = ins[0]->data<T>();
      platform::CPUPlace place = boost::get<platform::CPUPlace>(ctx.GetPlace());
      for (auto i = 0; i < rows; i++) {
        int k = (int)index[i] + 1;
        if (d_ins[k]) {
          memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
                       d_out->data<T>() + i * cols, cols * sizeof(T));
        }
      }
    } else {
#ifndef PADDLE_ONLY_CPU
      // copy index to cpu
      framework::Tensor index_t_cpu;
      index_t_cpu.CopyFrom<T>(*(ins[0]), platform::CPUPlace());
      auto* index = index_t_cpu.data<T>();

      auto stream = reinterpret_cast<const platform::CUDADeviceContext&>(
                        ctx.device_context())
                        .stream();
      platform::GPUPlace place = boost::get<platform::GPUPlace>(ctx.GetPlace());
      for (auto i = 0; i < rows; i++) {
        int k = (int)index[i] + 1;
        if (d_ins[k]) {
          memory::Copy(place, d_ins[k]->data<T>() + i * cols, place,
                       d_out->data<T>() + i * cols, cols * sizeof(T), stream);
        }
113
      }
114
#endif
Y
Yibing Liu 已提交
115 116 117 118 119
    }
  }
};
}
}