adagrad_op.cu 5.7 KB
Newer Older
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15 16

#define EIGEN_USE_GPU
#include "paddle/operators/adagrad_op.h"
Q
QI JUN 已提交
17
#include "paddle/operators/math/math_function.h"
18
#include "paddle/operators/math/selected_rows_functor.h"
Q
QI JUN 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {

namespace {

template <typename T, int block_size>
__global__ void MergeGradKernel(const T* grad, const int64_t* grad_rows,
                                T* grad_merge, const int64_t* grad_merge_rows,
                                size_t grad_merge_rows_size,
                                int64_t row_numel) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;
  __shared__ size_t grad_merge_idx;

  if (tid == 0) {
    for (size_t i = 0; i < grad_merge_rows_size; i++) {
      if (grad_rows[ty] == grad_merge_rows[i]) {
        grad_merge_idx = i;
      }
    }
  }

  __syncthreads();

  grad += ty * row_numel;
  grad_merge += grad_merge_idx * row_numel;
  for (int index = tid; index < row_numel; index += block_size) {
    paddle::platform::CudaAtomicAdd(grad_merge + index, grad[index]);
  }
}

template <typename T, int block_size>
__global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows,
                                           const T* learning_rate, T* param,
                                           T* moment, int64_t row_numel,
                                           T epsilon) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  grad += ty * row_numel;
  param += rows[ty] * row_numel;
  moment += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(param + index,
                                    -1.0 * learning_rate[0] * grad[index] /
                                        (sqrt(moment[index]) + epsilon));
  }
}
}  // namespace

template <typename T>
Q
QI JUN 已提交
75 76
struct SparseAdagradFunctor<platform::CUDADeviceContext, T> {
  void operator()(const platform::CUDADeviceContext& context,
Q
QI JUN 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
                  const framework::SelectedRows& grad,
                  const framework::Tensor& learning_rate, T epsilon,
                  framework::Tensor* moment, framework::Tensor* param) {
    // 1. g_m.rows = set(g.rows)
    auto grad_rows = grad.rows();
    std::set<int64_t> row_set(grad_rows.begin(), grad_rows.end());
    std::vector<int64_t> merge_rows(row_set.begin(), row_set.end());

    auto grad_width = grad.value().dims()[1];
    std::unique_ptr<framework::SelectedRows> grad_merge{
        new framework::SelectedRows()};
    grad_merge->set_rows(merge_rows);
    grad_merge->set_height(grad.height());
    grad_merge->mutable_value()->mutable_data<T>(
        framework::make_ddim(
            {static_cast<int64_t>(merge_rows.size()), grad_width}),
        context.GetPlace());

Q
QI JUN 已提交
95
    math::SetConstant<platform::CUDADeviceContext, T> constant_functor;
Q
QI JUN 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    constant_functor(context, grad_merge->mutable_value(), 0.0);

    auto* grad_merge_data = grad_merge->mutable_value()->data<T>();
    auto* grad_data = grad.value().data<T>();

    const int block_size = 256;
    dim3 threads(block_size, 1);
    dim3 grid1(1, grad_rows.size());

    MergeGradKernel<
        T, 256><<<grid1, threads, 0,
                  reinterpret_cast<const platform::CUDADeviceContext&>(context)
                      .stream()>>>(grad_data, grad.rows().data(),
                                   grad_merge_data, grad_merge->rows().data(),
                                   grad_merge->rows().size(), grad_width);

    // 2. m += g_m * g_m
    std::unique_ptr<framework::SelectedRows> grad_square{
        new framework::SelectedRows()};
    grad_square->set_rows(grad_merge->rows());
    grad_square->set_height(grad_merge->height());
    grad_square->mutable_value()->mutable_data<T>(grad_merge->value().dims(),
                                                  context.GetPlace());
    auto gs =
        framework::EigenVector<T>::Flatten(*(grad_square->mutable_value()));
    auto gm = framework::EigenVector<T>::Flatten(grad_merge->value());
Q
QI JUN 已提交
122
    gs.device(*context.eigen_device()) = gm * gm;
Q
QI JUN 已提交
123

Q
QI JUN 已提交
124
    math::SelectedRowsAddToTensor<platform::CUDADeviceContext, T> functor;
Q
QI JUN 已提交
125 126 127 128 129 130 131 132 133 134 135 136
    functor(context, *grad_square, moment);

    // 3. update parameter
    auto* lr = learning_rate.data<T>();
    auto* param_data = param->data<T>();
    auto* moment_data = moment->data<T>();

    dim3 grid2(1, merge_rows.size());
    SparseAdagradFunctorKernel<
        T, 256><<<grid2, threads, 0,
                  reinterpret_cast<const platform::CUDADeviceContext&>(context)
                      .stream()>>>(grad_merge_data, grad_merge->rows().data(),
137 138
                                   lr, param_data, moment_data, grad_width,
                                   epsilon);
Q
QI JUN 已提交
139 140 141
  }
};

Q
QI JUN 已提交
142 143
template struct SparseAdagradFunctor<platform::CUDADeviceContext, float>;
template struct SparseAdagradFunctor<platform::CUDADeviceContext, double>;
Q
QI JUN 已提交
144 145 146

}  // namespace operators
}  // namespace paddle
147 148

namespace ops = paddle::operators;
Q
QI JUN 已提交
149 150 151
REGISTER_OP_CUDA_KERNEL(
    adagrad, ops::AdagradOpKernel<paddle::platform::CUDADeviceContext, float>,
    ops::AdagradOpKernel<paddle::platform::CUDADeviceContext, double>);