layer.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

using framework::Variable;

void AddTo(Variable* src, Variable* dst) {
  framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld",
                 dst_tensor->numel(), src_tensor->numel());
  float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
  const float* src_data = src_tensor->data<float>();
  for (size_t i = 0; i < src_tensor->numel(); ++i) {
    dst_data[i] += src_data[i];
  }
}

class Autograd {
 public:
  explicit Autograd(framework::Scope* scope) : scope_(scope) {}

  void RunBackward(VarBase* var) {
    PADDLE_ENFORCE(var->pre_op_->op_desc_);
    // TODO(panyx0718): Only create for vars that "require_grad"
    (*var->pre_op_->output_vars_)[var->pre_op_out_idx_]->grads_ = var->grads_;

    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
      std::vector<Variable*> input_grads = ready_op->ApplyGrad(scope_);

      for (size_t i = 0; i < input_grads.size(); ++i) {
        if (!input_grads[i]) continue;
        OpBase* pre_op = ready_op->pre_ops_->at(i);
        if (!pre_op) continue;

        dep_counts[pre_op] -= 1;
        PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
        bool pre_op_ready = dep_counts[pre_op] == 0;
        if (pre_op_ready) {
          ready.push_back(pre_op);
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
      for (OpBase* pre_op : *(candidate->pre_ops_)) {
        if (!pre_op) continue;
        if (visited.find(pre_op) == visited.end()) {
          visited.insert(pre_op);
          queue.push_back(pre_op);
        }
        ret[pre_op] += 1;
      }
    }

    return ret;
  }

  framework::Scope* scope_;
};

framework::Variable* CreateVariable(const std::string& name,
                                    const framework::DDim& dim, float val,
                                    framework::Scope* scope,
                                    bool random_name = true) {
  std::string varname = name;
  if (random_name) {
    std::mt19937 rng;
    rng.seed(std::random_device()());
    std::uniform_int_distribution<std::mt19937::result_type> dist6(
        1, std::numeric_limits<int>::max());
    int id = dist6(rng);
    varname = string::Sprintf("%s@%d", varname, id);
  }

  VLOG(3) << "creating var " << varname;
  framework::Variable* var = scope->Var(varname);
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  float* data = tensor->mutable_data<float>(dim, platform::CPUPlace());
  std::fill(data, data + tensor->numel(), val);
  return var;
}

framework::LoDTensor& VarBase::Grad() {
  VLOG(3) << "get var grad " << var_desc_->Name();
  return *grads_->GetMutable<framework::LoDTensor>();
}

void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
133 134 135 136 137 138 139
  PADDLE_ENFORCE(grad->IsInitialized(), "grad %s must be initialized",
                 var_desc_->Name());

  PADDLE_ENFORCE(grad->Get<framework::LoDTensor>().IsInitialized(),
                 "variable %s has NO gradient, please set stop_gradient to it",
                 var_desc_->Name());

140 141
  VLOG(3) << "apply var grad " << var_desc_->Name() << " "
          << grad->Get<framework::LoDTensor>().data<float>()[0];
142

143 144 145 146 147
  if (!grads_) {
    grads_ =
        CreateVariable(string::Sprintf("%s@IGrad", var_desc_->Name()),
                       var_->Get<framework::LoDTensor>().dims(), 0.0, scope);
  }
148

149 150 151 152 153 154 155 156 157 158 159 160 161
  AddTo(grad, grads_);
  VLOG(3) << "grad_ after apply var grad " << var_desc_->Name() << " "
          << grads_->Get<framework::LoDTensor>().data<float>()[0];
}

std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
  VLOG(3) << "op grad " << grad_op_desc_->Type();

  for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) {
    if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) {
      // grad op inputs can be forward inputs, so not in grad_to_var.
      continue;
    }
162 163 164
    VLOG(3) << "op grad input var " << grad_invar;
    framework::VarDesc& grad_invar_desc =
        block_->FindRecursiveOrCreateVar(grad_invar);
165 166 167 168 169 170 171 172 173 174
    framework::Variable* var = scope->Var(grad_invar);
    const std::string& invar = grad_to_var_->at(grad_invar);
    for (VarBase* varbase : *output_vars_) {
      // Use the accumulated grads_ by sharing the input with grads_.
      if (varbase->var_desc_->Name() == invar) {
        var->GetMutable<framework::LoDTensor>()->ShareDataWith(
            varbase->grads_->Get<framework::LoDTensor>());
        break;
      }
    }
175 176 177 178 179
    grad_invar_desc.SetShape(
        framework::vectorize(var->Get<framework::LoDTensor>().dims()));
    VLOG(3)
        << "set op grad var desc's shape size "
        << framework::vectorize(var->Get<framework::LoDTensor>().dims()).size();
180 181 182
  }

  for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
183
    VLOG(3) << "op grad output var " << outvar;
184 185 186
    block_->FindRecursiveOrCreateVar(outvar);
    framework::Variable* var = scope->Var(outvar);
    if (!var->IsInitialized()) {
187
      VLOG(3) << "init op grad output var " << outvar;
188 189 190 191 192 193 194
      framework::VarDesc* var_desc = block_->FindVar(outvar);
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        var->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
    }
195
    VLOG(3) << "op grad output var " << outvar << " is inited";
196
  }
197

198 199 200 201 202 203 204 205 206 207 208
  grad_op_desc_->InferShape(*block_);
  grad_op_desc_->InferVarType(block_);
  std::unique_ptr<framework::OperatorBase> opbase =
      framework::OpRegistry::CreateOp(*grad_op_desc_);

  opbase->Run(*scope, platform::CPUPlace());

  // `ret` matches exactly with `input_vars_` of forward op.
  std::vector<Variable*> ret;
  for (size_t i = 0; i < input_vars_->size(); ++i) {
    bool found = false;
M
minqiyang 已提交
209
    VarBase* origin_var = (*input_vars_)[i];
210 211
    for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
      Variable* var = scope->FindVar(outvar);
212 213 214
      std::string orig_var_name = grad_to_var_->at(outvar);
      if (origin_var->var_desc_->Name() != orig_var_name ||
          origin_var->stop_gradient_) {
M
minqiyang 已提交
215 216
        continue;
      }
217
      VLOG(3) << "apply grad " << outvar << " with origin " << orig_var_name;
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
      origin_var->ApplyGrad(scope, var);
      found = true;
      ret.push_back(var);
      // TODO(panyx0718): There might be another outvar with the same name.
      // In that case, it doesn't matter the first one or the second one is
      // used.
      break;
    }
    if (!found) {
      ret.push_back(nullptr);
    }
  }
  return ret;
}

void VarBase::RunBackward(framework::Scope* scope) {
  grads_ = CreateVariable(framework::GradVarName(var_desc_->Name()),
                          var_->Get<framework::LoDTensor>().dims(), 1.0, scope,
                          false);
  if (!pre_op_) return;
  Autograd(scope).RunBackward(this);
}

}  // namespace imperative
}  // namespace paddle