nce_op.h 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
W
wanghaoshuang 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
W
wanghaoshuang 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
W
wanghaoshuang 已提交
14 15 16

#pragma once

W
wanghaoshuang 已提交
17
#include <math.h>
T
tangwei12 已提交
18
#include <iterator>
W
wanghaoshuang 已提交
19
#include <random>
20
#include <set>
T
tangwei12 已提交
21
#include <string>
22
#include <vector>
Y
Yi Wang 已提交
23 24
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/selected_rows.h"
26
#include "paddle/fluid/operators/math/sampler.h"
W
wanghaoshuang 已提交
27
#include "unsupported/Eigen/CXX11/Tensor"
28

T
tangwei12 已提交
29 30 31 32
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/parameter_prefetch.h"
#endif

W
wanghaoshuang 已提交
33 34 35
namespace paddle {
namespace operators {

36
using Tensor = framework::Tensor;
37 38
using LoDTensor = framework::LoDTensor;
using SelectedRows = framework::SelectedRows;
39
using Sampler = math::Sampler;
40
using DDim = framework::DDim;
W
wanghaoshuang 已提交
41 42 43 44 45

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

Q
QI JUN 已提交
46
template <typename DeviceContext, typename T>
47 48
void PrepareSamples(const framework::ExecutionContext &context,
                    Sampler *sampler) {
W
wanghaoshuang 已提交
49
  auto label = context.Input<Tensor>("Label");
50
  const int64_t *label_data = label->data<int64_t>();
W
wanghaoshuang 已提交
51
  auto label_dims = label->dims();
W
wanghaoshuang 已提交
52
  // for unitest
W
wanghaoshuang 已提交
53 54
  std::vector<int> custom_neg_classes =
      context.Attr<std::vector<int>>("custom_neg_classes");
W
wanghaoshuang 已提交
55 56 57

  auto sample_labels = context.Output<Tensor>("SampleLabels");
  auto sample_labels_dims = sample_labels->dims();
58
  int64_t *sample_labels_data =
W
wanghaoshuang 已提交
59
      sample_labels->mutable_data<int64_t>(context.GetPlace());
W
wanghaoshuang 已提交
60 61

  int num_label = label_dims.size() == 2 ? label_dims[1] : 1;
W
wanghaoshuang 已提交
62
  int index = 0;
63
  for (int64_t i = 0; i < label_dims[0]; ++i) {
W
wanghaoshuang 已提交
64 65
    int j = 0;
    for (; j < num_label; ++j) {
W
wanghaoshuang 已提交
66
      sample_labels_data[index++] = label_data[i * num_label + j];
W
wanghaoshuang 已提交
67
    }
W
wanghaoshuang 已提交
68 69
    if (custom_neg_classes.size() > 0) {
      for (auto label : custom_neg_classes) {
W
wanghaoshuang 已提交
70 71 72 73
        sample_labels_data[index++] = label;
      }
    } else {
      for (; j < sample_labels_dims[1]; ++j) {
W
wanghaoshuang 已提交
74
        // TODO(wanghaoshuang): support more distribution sampling
75
        sample_labels_data[index++] = sampler->Sample();
W
wanghaoshuang 已提交
76
      }
W
wanghaoshuang 已提交
77 78 79 80
    }
  }
}

Q
QI JUN 已提交
81
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
82 83
class NCEKernel : public framework::OpKernel<T> {
 public:
84
  void Compute(const framework::ExecutionContext &context) const override {
85 86 87 88 89
    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
    int num_total_classes = context.Attr<int>("num_total_classes");
    int num_neg_samples = context.Attr<int>("num_neg_samples");

90
    Sampler *sampler;
91 92 93 94 95 96 97 98 99 100
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
101 102 103 104 105 106 107 108 109 110 111 112 113
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
114 115 116 117 118 119
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    PrepareSamples<DeviceContext, T>(context, sampler);
W
wanghaoshuang 已提交
120
    auto sample_labels = context.Output<Tensor>("SampleLabels");
121
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
122
    auto sample_out = context.Output<Tensor>("SampleLogits");
123
    T *sample_out_data = sample_out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
124 125
    auto label = context.Input<Tensor>("Label");
    auto sample_weight = context.Input<Tensor>("SampleWeight");
126
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
127 128 129
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
130
    auto out = context.Output<Tensor>("Cost");
131
    T *out_data = out->mutable_data<T>(context.GetPlace());
132
    int64_t num_true_class = 1;
W
wanghaoshuang 已提交
133 134 135
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
136 137
    int64_t sampled_labels_num = sample_labels->dims()[1];
    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
138
    // forward bias
W
wanghaoshuang 已提交
139
    auto bias = context.Input<Tensor>("Bias");
W
wanghaoshuang 已提交
140
    if (bias != nullptr) {
141
      const T *bias_data = bias->data<T>();
142
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
143 144 145
        sample_out_data[i] = bias_data[sample_labels_data[i]];
      }
    } else {
146
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
W
wanghaoshuang 已提交
147 148 149 150
        sample_out_data[i] = 0;
      }
    }
    // forward mul
W
wanghaoshuang 已提交
151
    auto input_mat = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
T
tangwei12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167

    // for remote prefetch
    auto epmap = context.Attr<std::vector<std::string>>("epmap");

    if (!epmap.empty()) {
      // if epmap is not empty, then the parameter will be fetched from remote
      // parameter
      // server

      std::vector<int64_t> labels;
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        labels.push_back(sample_labels_data[i]);
      }
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

T
tangwei12 已提交
168 169
      framework::Scope &local_scope = context.scope().NewScope();

Q
Qiao Longfei 已提交
170 171
      auto height_sections =
          context.Attr<std::vector<int64_t>>("height_sections");
T
tangwei12 已提交
172 173
      auto table_names = context.Attr<std::vector<std::string>>("table_names");

T
tangwei12 已提交
174
      auto *ids = local_scope.Var("Ids@Prefetch");
T
tangwei12 已提交
175 176 177 178 179 180 181 182
      auto *x_tensor = ids->GetMutable<framework::LoDTensor>();
      x_tensor->mutable_data<int64_t>(
          framework::make_ddim({static_cast<int64_t>(labels.size()), 1}),
          context.GetPlace());
      // copy.
      std::memcpy(x_tensor->data<int64_t>(), labels.data(),
                  labels.size() * sizeof(int64_t));

T
tangwei12 已提交
183 184 185 186 187 188 189
      std::vector<int> w_dims = paddle::framework::vectorize2int(
          context.Input<Tensor>("Weight")->dims());
      w_dims[0] = static_cast<int>(labels.size());

      auto *w_tensor = local_scope.Var("Weight@Prefetch")
                           ->GetMutable<framework::LoDTensor>();
      w_tensor->Resize(framework::make_ddim(w_dims));
T
tangwei12 已提交
190 191

#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
192 193 194
      operators::distributed::prefetch("Ids@Prefetch", "Weight@Prefetch",
                                       table_names, epmap, height_sections,
                                       context, local_scope);
T
tangwei12 已提交
195 196 197 198
#else
      PADDLE_THROW(
          "paddle is not compiled with distribute support, can not do "
          "parameter prefetch!");
T
tangwei12 已提交
199
#endif
T
tangwei12 已提交
200

T
tangwei12 已提交
201
      auto weight_mat = EigenMatrix<T>::From(
T
tangwei12 已提交
202
          (local_scope.Var("Weight@Prefetch")->Get<framework::LoDTensor>()));
T
tangwei12 已提交
203 204 205 206 207 208 209 210 211 212 213 214
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        std::vector<int64_t>::iterator it =
            std::find(labels.begin(), labels.end(), sample_labels_data[i]);
        int idx = std::distance(labels.begin(), it);

        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(idx, 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
T
tangwei12 已提交
215
      context.scope().DeleteScope(&local_scope);
T
tangwei12 已提交
216 217 218 219 220 221 222 223 224 225 226
    } else {
      auto weight_mat =
          EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        Eigen::Tensor<T, 0, Eigen::RowMajor, Eigen::DenseIndex> result =
            (input_mat.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
             weight_mat.chip(sample_labels_data[i], 0))
                .sum();
        sample_out_data[i] += result(0);
        sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i])));
      }
W
wanghaoshuang 已提交
227
    }
T
tangwei12 已提交
228

W
wanghaoshuang 已提交
229
    // forward cost
230
    for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) {
W
wanghaoshuang 已提交
231 232
      out_data[i] = 0;
      T w = sample_weight == nullptr ? 1. : sample_weight_data[i];
233 234 235 236 237
      for (int64_t j = 0; j < sampled_labels_num; ++j) {
        int64_t target = sample_labels_data[i * sampled_labels_num + j];
        T o = sample_out_data[i * sampled_labels_num + j];
        float b = sampler->Probability(target) * num_neg_samples;
        T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b));
W
wanghaoshuang 已提交
238 239 240
        out_data[i] += w * cost;
      }
    }
241
    delete sampler;
W
wanghaoshuang 已提交
242 243 244
  }
};

Q
QI JUN 已提交
245
template <typename DeviceContext, typename T>
W
wanghaoshuang 已提交
246 247
class NCEGradKernel : public framework::OpKernel<T> {
 public:
248
  void Compute(const framework::ExecutionContext &context) const override {
W
wanghaoshuang 已提交
249
    auto d_out = context.Input<Tensor>(framework::GradVarName("Cost"));
250
    const T *d_out_data = d_out->data<T>();
W
wanghaoshuang 已提交
251 252
    auto label = context.Input<Tensor>("Label");
    auto sample_out = context.Input<Tensor>("SampleLogits");
253
    const T *sample_out_data = sample_out->data<T>();
W
wanghaoshuang 已提交
254
    auto sample_labels = context.Input<Tensor>("SampleLabels");
255
    const int64_t *sample_labels_data = sample_labels->data<int64_t>();
W
wanghaoshuang 已提交
256
    auto sample_weight = context.Input<Tensor>("SampleWeight");
257
    const T *sample_weight_data = nullptr;
W
wanghaoshuang 已提交
258 259 260
    if (sample_weight != nullptr) {
      sample_weight_data = sample_weight->data<T>();
    }
W
wanghaoshuang 已提交
261 262
    int num_neg_samples = context.Attr<int>("num_neg_samples");
    int num_total_classes = context.Attr<int>("num_total_classes");
W
wanghaoshuang 已提交
263 264 265 266
    int num_true_class = 1;
    if (label != nullptr) {
      num_true_class = label->dims()[1];
    }
267 268 269

    int sampler_type = context.Attr<int>("sampler");
    int seed = context.Attr<int>("seed");
270
    Sampler *sampler;
271 272 273 274 275 276 277 278 279 280
    switch (sampler_type) {
      case 0: {
        sampler = new math::UniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 1: {
        sampler = new math::LogUniformSampler(num_total_classes - 1, seed);
        break;
      }
      case 2: {
281 282 283 284 285 286 287 288 289 290 291 292 293
        auto dist_probs = context.Input<Tensor>("CustomDistProbs");
        auto dist_alias = context.Input<Tensor>("CustomDistAlias");
        auto dist_alias_probs = context.Input<Tensor>("CustomDistAliasProbs");

        PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes);
        PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes);

        const float *probs_data = dist_probs->data<float>();
        const int *alias_data = dist_alias->data<int>();
        const float *alias_probs_data = dist_alias_probs->data<float>();
        sampler = new math::CustomSampler(num_total_classes - 1, probs_data,
                                          alias_data, alias_probs_data, seed);
294 295 296 297 298 299
        break;
      }
      default: { PADDLE_THROW("Unsupported SamplerType."); }
    }

    //    T b = 1. / num_total_classes * num_neg_samples;
W
wanghaoshuang 已提交
300
    Tensor sample_grad;  // tmp tensor
301
    T *sample_grad_data =
W
wanghaoshuang 已提交
302 303
        sample_grad.mutable_data<T>(sample_labels->dims(), context.GetPlace());
    // backward cost
304
    for (int64_t i = 0; i < sample_labels->numel(); ++i) {
305 306 307
      int64_t label_idx = i % sample_labels->dims()[1];
      int64_t sample_idx = i / sample_labels->dims()[1];
      float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples;
W
wanghaoshuang 已提交
308
      T o = sample_out_data[i];
309 310
      T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx];
      sample_grad_data[i] = label_idx < num_true_class
W
wanghaoshuang 已提交
311 312
                                ? w * (b / (o + b)) * (o - 1)
                                : w * (o * (1 - o) / (o + b));
313
      sample_grad_data[i] *= d_out_data[sample_idx];
W
wanghaoshuang 已提交
314
    }
315

316 317 318 319 320 321 322 323 324 325
    // get d_bias
    auto d_bias = context.Output<Tensor>(framework::GradVarName("Bias"));
    if (d_bias != nullptr) {
      T *d_bias_data = d_bias->mutable_data<T>(context.GetPlace());
      std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0);
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
        d_bias_data[sample_labels_data[i]] += sample_grad_data[i];
      }
    }

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
    bool is_sparse = context.Attr<bool>("is_sparse");

    if (!is_sparse) {
      // get d_w
      auto d_w = context.Output<Tensor>(framework::GradVarName("Weight"));
      if (d_w != nullptr) {
        auto d_w_data = d_w->mutable_data<T>(context.GetPlace());
        std::fill(d_w_data, d_w_data + d_w->numel(), 0.0);
        auto d_w_matrix = EigenMatrix<T>::From(*d_w);
        auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
        for (int64_t i = 0; i < sample_labels->numel(); ++i) {
          d_w_matrix.chip(sample_labels_data[i], 0) +=
              x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
              sample_grad_data[i];
        }
      }
    } else {
      std::vector<int64_t> labels;
344
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
345
        labels.push_back(sample_labels_data[i]);
W
wanghaoshuang 已提交
346
      }
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
      std::set<T> st(labels.begin(), labels.end());
      labels.assign(st.begin(), st.end());

      auto *table_var = context.InputVar("Weight");
      DDim table_dim;
      if (table_var->IsType<LoDTensor>()) {
        table_dim = context.Input<LoDTensor>("Weight")->dims();
      } else if (table_var->IsType<SelectedRows>()) {
        auto *table_t = context.Input<SelectedRows>("Weight");
        table_dim = table_t->value().dims();
      } else {
        PADDLE_THROW(
            "The parameter Weight of a NCE_OP "
            "must be either LoDTensor or SelectedRows");
      }

      auto d_w = context.Output<SelectedRows>(framework::GradVarName("Weight"));

      d_w->set_rows(labels);
      d_w->set_height(table_dim[0]);

      auto *d_table_value = d_w->mutable_value();
      d_table_value->Resize(
          {static_cast<int64_t>(labels.size()), table_dim[1]});
      auto d_w_data = d_table_value->mutable_data<T>(context.GetPlace());
      std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0);

      auto d_w_matrix = EigenMatrix<T>::From(*d_table_value);
W
wanghaoshuang 已提交
375
      auto x_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Input")));
376
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
377
        d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) +=
378
            x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) *
W
wanghaoshuang 已提交
379 380 381
            sample_grad_data[i];
      }
    }
382

W
wanghaoshuang 已提交
383
    // get d_x
W
wanghaoshuang 已提交
384
    auto d_x = context.Output<Tensor>(framework::GradVarName("Input"));
W
wanghaoshuang 已提交
385
    if (d_x != nullptr) {
386
      auto *d_x_data = d_x->mutable_data<T>(context.GetPlace());
Y
Yang Yu 已提交
387
      std::fill(d_x_data, d_x_data + d_x->numel(), 0.0);
W
wanghaoshuang 已提交
388
      auto d_x_matrix = EigenMatrix<T>::From(*d_x);
W
wanghaoshuang 已提交
389
      auto w_matrix = EigenMatrix<T>::From(*(context.Input<Tensor>("Weight")));
390
      for (int64_t i = 0; i < sample_labels->numel(); ++i) {
391
        d_x_matrix.chip(static_cast<int>(i / sample_labels->dims()[1]), 0) +=
W
wanghaoshuang 已提交
392 393 394
            w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i];
      }
    }
395

396
    delete sampler;
W
wanghaoshuang 已提交
397 398 399 400
  }
};
}  // namespace operators
}  // namespace paddle