pad_op.cc 4.5 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/pad_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class PadOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30 31 32
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of PadOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of PadOp should not be null.");

    auto x_dim = ctx->GetInputDim("X");
    auto paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
W
wanghaoshuang 已提交
33
    PADDLE_ENFORCE_EQ(x_dim.size() * 2, int64_t(paddings.size()),
W
wanghaoshuang 已提交
34 35
                      "Size of paddings should be equal to 2 * dimension size "
                      "of input tensor.");
W
wanghaoshuang 已提交
36
    std::vector<int64_t> out_dims(x_dim.size());
W
wanghaoshuang 已提交
37 38
    for (int i = 0; i < x_dim.size(); ++i) {
      out_dims[i] = x_dim[i] + paddings[i * 2] + paddings[i * 2 + 1];
W
wanghaoshuang 已提交
39
    }
Q
Qiao Longfei 已提交
40
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
D
Fix bug  
dangqingqing 已提交
41 42 43
    if (out_dims[0] == x_dim[0]) {
      // Only pass LoD when the first dimension is equal between
      // output and input.
Q
Qiao Longfei 已提交
44
      ctx->ShareLoD("X", /*->*/ "Out");
D
Fix bug  
dangqingqing 已提交
45
    }
W
wanghaoshuang 已提交
46 47 48
  }
};

W
wanghaoshuang 已提交
49
class PadOpMaker : public framework::OpProtoAndCheckerMaker {
W
wanghaoshuang 已提交
50
 public:
Q
Qiao Longfei 已提交
51
  PadOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
W
wanghaoshuang 已提交
52
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
53 54 55 56 57
    AddInput("X",
             "The input of pad op. "
             "The input should be a k-D tensor(k > 0 and k < 7)");
    AddOutput("Out",
              "The output of pad op."
58
              "A tensor with the same shape as X.");
W
wanghaoshuang 已提交
59
    AddComment(R"DOC(
W
wanghaoshuang 已提交
60 61 62 63 64 65 66
Pad input into output, as specified by paddings and pad_value. The input should be a k-D tensor(k > 0 and k < 7). As an example:

Given:

X = [[1, 2],
   [3, 4]]

Q
Qiao Longfei 已提交
67
and
W
wanghaoshuang 已提交
68

W
wanghaoshuang 已提交
69
paddings = [0, 1, 1, 2]
W
wanghaoshuang 已提交
70 71 72

and

Q
Qiao Longfei 已提交
73 74 75
pad_value = 0

then we get
W
wanghaoshuang 已提交
76 77 78 79

Out = [[0, 1, 2, 0, 0]
       [0, 3, 4, 0, 0]
       [0, 0, 0, 0, 0]]
W
wanghaoshuang 已提交
80
)DOC");
W
wanghaoshuang 已提交
81 82
    AddAttr<std::vector<int>>(
        "paddings",
W
wanghaoshuang 已提交
83 84
        "A list<int> to describes padding rules for each dimension."
        " For 2-D image tensor, paddings=[0, 1, 2, 3] means"
W
wanghaoshuang 已提交
85
        " padding 0 row to top, 1 row to bottom, 2 columns to left"
W
wanghaoshuang 已提交
86 87
        " and 3 columns to right.Size of paddings should be equal to"
        " 2 * dimension size of input tensor.");
W
wanghaoshuang 已提交
88 89
    AddAttr<float>("pad_value",
                   "(float) default to 0; "
W
wanghaoshuang 已提交
90
                   "The value to fill padded areas.")
W
wanghaoshuang 已提交
91 92 93 94 95 96 97 98
        .SetDefault(0.0f);
  }
};

class PadOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

99
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
100 101 102 103 104 105 106
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
W
wanghaoshuang 已提交
107
    }
W
wanghaoshuang 已提交
108 109 110
  }
};

111 112 113
class PadOpGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
Y
Yu Yang 已提交
114 115 116 117 118 119 120 121

 protected:
  std::unique_ptr<framework::OpDescBind> Apply() const override {
    auto* bind = new framework::OpDescBind();
    bind->SetInput("X", Input("X"));
    bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    bind->SetAttrMap(Attrs());
Y
Yu Yang 已提交
122
    bind->SetType("pad_grad");
Y
Yu Yang 已提交
123 124
    return std::unique_ptr<framework::OpDescBind>(bind);
  }
125 126
};

W
wanghaoshuang 已提交
127 128 129 130
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
131 132 133

REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker);
REGISTER_OPERATOR(pad_grad, ops::PadOpGrad);
W
wanghaoshuang 已提交
134 135 136
REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(pad_grad,
                       ops::PadGradKernel<paddle::platform::CPUPlace, float>);