varbase_patch_methods.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import framework
from .. import core
from . import BackwardStrategy
from ..framework import Variable, _getitem_impl_
from .. import unique_name
import numpy as np
21
from .math_op_patch import monkey_patch_math_varbase
22 23 24 25 26 27 28 29


def monkey_patch_varbase():
    # TODO(jiabin): move this to cplusplus end if we find some performance issue on it
    @framework.dygraph_only
    def set_value(self, value):
        """
        **Notes**:
T
tianshuo78520a 已提交
30
            **This API is ONLY available in Dygraph mode**
31 32 33 34 35 36 37 38 39 40 41

        Set a new value for this Variable.

        Args:
            value (Variable|np.ndarray): the new value.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
42
                from paddle.fluid.dygraph import Linear
43 44
                import numpy as np

45
                data = np.ones([3, 1024], dtype='float32')
46
                with fluid.dygraph.guard():
47
                    linear = fluid.dygraph.Linear(1024, 4)
48
                    t = to_variable(data)
49
                    linear(t)  # call with default weight
50
                    custom_weight = np.random.randn(1024, 4).astype("float32")
51 52
                    linear.weight.set_value(custom_weight)  # change existing weight
                    out = linear(t)  # call with different weight
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

        """
        assert isinstance(value, (np.ndarray, core.VarBase)), \
            "Variable set_value function, arguments type only support Variable, numpy, VarBase"

        value_np = value
        if isinstance(value, core.VarBase):
            value_np = value.numpy()

        self_tensor_np = self.numpy()

        assert self_tensor_np.shape == value_np.shape, \
            "Variable Shape not match, Variable [ {} ] need tensor with shape {} but load set tensor with shape {}".format(
                self.name, self_tensor_np.shape, value_np.shape)

        assert self_tensor_np.dtype == value_np.dtype, \
            "Variable dtype not match, Variable [ {} ] need tensor with dtype {}  but load tensor with dtype {}".format(
                self.name, self_tensor_np.dtype, value_np.dtype)

        self.value().get_tensor().set(value_np,
                                      framework._current_expected_place())

    @framework.dygraph_only
76
    def backward(self, backward_strategy=None, retain_graph=False):
77 78
        """
        **Notes**:
T
tianshuo78520a 已提交
79
            **This API is ONLY available in Dygraph mode**
80 81 82 83 84

        Run backward of current Graph which starts from current Variable

        Args:
            backward_strategy( :ref:`api_fluid_dygraph_BackwardStrategy` ): The Backward Strategy to run backward
85 86 87 88
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
            like to add more ops to the built graph after calling this method(`backward`), set the parameter
            `retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
            Defaults to False.
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

        Returns:
            NoneType: None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                        # there is no one need gradient on it.
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)

        """
        if framework.in_dygraph_mode():
            if backward_strategy is None:
                backward_strategy = BackwardStrategy()
                backward_strategy.sort_sum_gradient = False

120 121
            self._run_backward(backward_strategy,
                               framework._dygraph_tracer(), retain_graph)
122 123
        else:
            raise ValueError(
T
tianshuo78520a 已提交
124
                "Variable.backward() is only available in DyGraph mode")
125 126 127 128 129

    @framework.dygraph_only
    def gradient(self):
        """
        **Notes**:
T
tianshuo78520a 已提交
130
            **This API is ONLY available in Dygraph mode**
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        Get the Gradient of Current Variable

        Returns:
            ndarray: Numpy value of the gradient of current Variable

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
                    backward_strategy = fluid.dygraph.BackwardStrategy()
                    backward_strategy.sort_sum_gradient = True
                    loss2.backward(backward_strategy)
                    print(loss2.gradient())

        """
        if self._grad_ivar() is None:
159 160
            return None

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        new_ivar = self._grad_ivar()._copy_to(core.CPUPlace(), True)
        if self._grad_ivar().type == core.VarDesc.VarType.SELECTED_ROWS:
            return (np.array(new_ivar.value().get_selected_rows().get_tensor()),
                    np.array(new_ivar.value().get_selected_rows().rows()))
        else:
            return np.array(new_ivar.value().get_tensor())

    def __str__(self):
        return self.to_string(True)

    @property
    def block(self):
        return framework.default_main_program().global_block()

    def to_string(self, throw_on_error, with_details=False):
        """
        Get debug string.

        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;

        Returns:
            str: The debug string.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable.to_string(True))
                print("=============with detail===============")
                print(new_variable.to_string(True, True))
        """
        if framework.in_dygraph_mode():
            # TODO(panyx0718): add more dygraph debug info.
            tensor = self.value().get_tensor()
            if tensor._is_initialized():
                return 'name %s, dtype: %s shape: %s %s' % (
                    self.name, self.dtype, self.shape, str(tensor))
            else:
                return 'name %s, shape: %s, not inited' % (self.name,
                                                           self.shape)

212 213 214 215 216 217 218 219 220 221 222 223 224 225
    def __nonzero__(self):
        numel = np.prod(self.shape)
        assert numel == 1, "When Variable is used as the condition of if/while , Variable can only contain one element."
        tensor = self.value().get_tensor()
        assert tensor._is_initialized(), "tensor not initialized"
        return bool(np.all(tensor.__array__() > 0))

    def __bool__(self):
        return self.__nonzero__()

    for method_name, method in (
        ("__bool__", __bool__), ("__nonzero__", __nonzero__),
        ("set_value", set_value), ("block", block), ("backward", backward),
        ("gradient", gradient), ("__str__", __str__), ("to_string", to_string)):
226
        setattr(core.VarBase, method_name, method)
227 228 229

    # patch math methods for varbase
    monkey_patch_math_varbase()