conv_transpose_cudnn_op.cu 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
18 19 20
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
21
#include "paddle/fluid/operators/conv_cudnn_helper.h"
22
#endif
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#include "paddle/fluid/operators/conv_transpose_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/padding.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int D>
static void DataTranspose(const framework::ExecutionContext& ctx,
                          const Tensor* input, Tensor* output,
                          const std::vector<int>& axis, int flag = 0) {
  auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  math::Transpose<platform::CUDADeviceContext, T, D> transpose;
  auto in_dims = input->dims();
  std::vector<int64_t> input_transpose_vec;
  for (size_t i = 0; i < axis.size(); ++i) {
    if (flag == 0)
      input_transpose_vec.push_back(in_dims[axis[i]]);
    else
      input_transpose_vec.push_back(in_dims[i]);
  }
  framework::DDim input_transpose_dims(
      framework::make_ddim(input_transpose_vec));
  output->mutable_data<T>(input_transpose_dims, ctx.GetPlace());
  transpose(dev_ctx, *input, output, axis);
}

template <typename T>
class CUDNNConvTransposeOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
56 57 58
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
59 60 61 62 63 64 65 66 67 68 69 70 71
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");

    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    const T* filter_data = filter->data<T>();
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
72 73 74
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
75 76 77 78 79

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    std::vector<int> input_vec = framework::vectorize<int>(input->dims());
    std::vector<int> output_vec = framework::vectorize<int>(output->dims());
W
wuhuanzhou 已提交
80
    if (data_layout == platform::DataLayout::kNHWC) {
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
      }
    } else {
      input_transpose = *input;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
112
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = input_transpose.dims()[0];
      new_input_shape_vec[1] = input_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            input_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, input_transpose, pad_value, &transformed_input);
        } break;
        default:
152 153
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
      }
    } else {
      transformed_input = input_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    const T* input_data = transformed_input.data<T>();
    input_vec = framework::vectorize<int>(transformed_input.dims());

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    Tensor transformed_output;
    if (!is_sys_pad) {
      DDim transformed_output_shape(
          framework::make_ddim(transformed_output_vec));
      transformed_output.mutable_data<T>(transformed_output_shape,
                                         ctx.GetPlace());
    } else {
      output->mutable_data<T>(ctx.GetPlace());
      transformed_output.ShareDataWith(*output);
      transformed_output.Resize(framework::make_ddim(transformed_output_vec));
    }
    T* transformed_output_data = transformed_output.data<T>();

W
wuhuanzhou 已提交
201
    platform::DataLayout layout;
202

203 204 205 206 207 208 209 210
    int iwo_groups = groups;
    int c_groups = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

211
    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
212
      layout = platform::DataLayout::kNCHW;
213
    } else {
W
wuhuanzhou 已提交
214
      layout = platform::DataLayout::kNCDHW;
215 216
    }

217
    size_t workspace_size = 0;
218 219 220
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t algo{};
#else
221
    cudnnConvolutionBwdDataAlgo_t algo{};
222
#endif
223 224 225
    // ------------------- cudnn conv algorithm ---------------------
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
226 227
    auto layout_tensor = GetCudnnTensorFormat(layout);
    bool deterministic = FLAGS_cudnn_deterministic;
L
Lv Mengsi 已提交
228

229 230
    auto dtype = platform::CudnnDataType<T>::type;
    // ------------------- cudnn descriptors ---------------------
231 232 233 234 235 236 237
    ConvArgs args{&transformed_output,
                  filter,
                  &transformed_input,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
238 239 240 241
    args.handle = handle;
    args.idesc.set(transformed_output, iwo_groups);
    args.wdesc.set(*filter, layout_tensor, iwo_groups);
    args.odesc.set(transformed_input, iwo_groups);
A
AshburnLee 已提交
242 243
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), c_groups);
244

245 246 247
#ifdef PADDLE_WITH_HIP
    using search = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
#else
248
    using search = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
249 250
#endif

251
    algo = search::Find<T>(args, false, deterministic, ctx);
252 253
    workspace_size =
        std::max(workspace_size, search::GetWorkspaceSize(args, algo));
254 255 256 257 258 259 260

    // ------------------- cudnn conv transpose forward ---------------------
    int input_offset =
        transformed_input.numel() / transformed_input.dims()[0] / groups;
    int output_offset =
        transformed_output.numel() / transformed_output.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
261 262
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
263 264
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    for (int g = 0; g < groups; g++) {
265 266 267 268 269 270 271 272 273 274 275
#ifdef PADDLE_WITH_HIP
      auto cudnn_func = [&](void* cudnn_workspace) {
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::miopenConvolutionBackwardData(
                handle, &alpha, args.odesc.desc(),
                input_data + input_offset * g, args.wdesc.desc(),
                filter_data + filter_offset * g, args.cdesc.desc(), algo, &beta,
                args.idesc.desc(), transformed_output_data + output_offset * g,
                cudnn_workspace, workspace_size));
      };
#else   // PADDLE_WITH_HIP
276
      auto cudnn_func = [&](void* cudnn_workspace) {
277 278
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBackwardData(
279 280 281 282
                handle, &alpha, args.wdesc.desc(),
                filter_data + filter_offset * g, args.odesc.desc(),
                input_data + input_offset * g, args.cdesc.desc(), algo,
                cudnn_workspace, workspace_size, &beta, args.idesc.desc(),
283
                transformed_output_data + output_offset * g));
284
      };
285
#endif  // PADDLE_WITH_HIP
286
      workspace_handle.RunFunc(cudnn_func, workspace_size);
287 288 289 290 291 292 293 294 295
    }
    if (!is_sys_pad && strides.size() == 2U) {
      Slice<paddle::platform::CUDADeviceContext, T, 4>(
          ctx, &transformed_output, output, starts, ends, axes);
    } else if (!is_sys_pad && strides.size() == 3U) {
      Slice<paddle::platform::CUDADeviceContext, T, 5>(
          ctx, &transformed_output, output, starts, ends, axes);
    }

W
wuhuanzhou 已提交
296
    if (data_layout == platform::DataLayout::kNHWC) {
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
      Tensor output_transpose;
      Tensor output_nchw;
      output_nchw.ShareDataWith(*output);
      output_nchw.Resize(framework::make_ddim(output_vec));
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 2, 3, 1};
        DataTranspose<T, 4>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 2, 3, 4, 1};
        DataTranspose<T, 5>(ctx, &output_nchw, &output_transpose, axis);
        *output = output_transpose;
      }
    }
  }
};

template <typename T>
class CUDNNConvTransposeGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
318 319 320
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    // cudnn v5 does not support dilations
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int user_workspace_size = ctx.Attr<int>("workspace_size_MB");
    const std::string data_layout_str = ctx.Attr<std::string>("data_format");
W
wuhuanzhou 已提交
336 337 338
    const paddle::platform::DataLayout data_layout =
        (data_layout_str != "NHWC" ? platform::DataLayout::kNCHW
                                   : platform::DataLayout::kNHWC);
339 340 341 342 343 344 345

    // if channel_last, transpose to channel_first
    Tensor input_transpose;
    Tensor output_grad_transpose;
    std::vector<int> input_vec = framework::vectorize<int>(input->dims());
    std::vector<int> output_vec =
        framework::vectorize<int>(output_grad->dims());
W
wuhuanzhou 已提交
346
    if (data_layout == platform::DataLayout::kNHWC) {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
      if (strides.size() == 2U) {
        std::vector<int> axis = {0, 3, 1, 2};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 4>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 4>(ctx, output_grad, &output_grad_transpose, axis);
      } else if (strides.size() == 3U) {
        std::vector<int> axis = {0, 4, 1, 2, 3};
        for (size_t i = 0; i < axis.size(); ++i) {
          input_vec[i] = input->dims()[axis[i]];
          output_vec[i] = output_grad->dims()[axis[i]];
        }
        DataTranspose<T, 5>(ctx, input, &input_transpose, axis);
        DataTranspose<T, 5>(ctx, output_grad, &output_grad_transpose, axis);
      }
    } else {
      input_transpose = *input;
      output_grad_transpose = *output_grad;
    }

    // update padding and dilation
    auto in_dims = input_transpose.dims();
    auto filter_dims = filter->dims();
    framework::DDim in_data_dims;
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
381
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

    std::vector<int> input_pad(input_transpose.dims().size() * 2, 0);
    Tensor transformed_output_grad;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);
      new_output_grad_shape_vec[0] = output_grad_transpose.dims()[0];
      new_output_grad_shape_vec[1] = output_grad_transpose.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_output_grad_shape_vec[i + 2] =
            output_grad_transpose.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_output_grad_shape(
          framework::make_ddim(new_output_grad_shape_vec));
      transformed_output_grad.Resize(new_output_grad_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_output_grad =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);
      const int rank = input_transpose.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, output_grad_transpose, pad_value,
              &transformed_output_grad);
        } break;
        default:
423 424
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Op(ConvTranspose) only supports 4-D or 5-D input Tensor."));
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
      }
    } else {
      transformed_output_grad = output_grad_transpose;
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = input_transpose.data<T>();
    const T* output_grad_data = transformed_output_grad.data<T>();
    output_vec = framework::vectorize<int>(transformed_output_grad.dims());

    // ------------------- cudnn descriptors ---------------------
W
wuhuanzhou 已提交
444
    platform::DataLayout layout;
445 446

    if (strides.size() == 2U) {
W
wuhuanzhou 已提交
447
      layout = platform::DataLayout::kNCHW;
448
    } else {
W
wuhuanzhou 已提交
449
      layout = platform::DataLayout::kNCDHW;
450 451
    }

452 453 454 455 456 457 458
    int iwo_groups = groups;
    int c_groups = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    auto dtype = platform::CudnnDataType<T>::type;

    ConvArgs args1{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_output_grad,
                   filter,
                   &input_transpose,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
476 477 478 479 480

#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t data_algo{};
    miopenConvBwdWeightsAlgorithm_t filter_algo{};
#else
481 482
    cudnnConvolutionFwdAlgo_t data_algo{};
    cudnnConvolutionBwdFilterAlgo_t filter_algo{};
483
#endif
484 485 486

    auto layout_tensor = GetCudnnTensorFormat(layout);
    size_t workspace_size = 0;
487 488
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
489 490 491 492 493 494 495 496
    bool deterministic = FLAGS_cudnn_deterministic;
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;
    if (input_grad)
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    if (filter_grad)
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());

497
    if (input_grad) {
498 499 500 501 502
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
      args1.handle = handle;
      args1.idesc.set(transformed_output_grad, iwo_groups);
      args1.wdesc.set(*filter, layout_tensor, iwo_groups);
      args1.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
503 504
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
505 506 507
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
#else
508
      using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
509
#endif
510
      data_algo = search1::Find<T>(args1, false, deterministic, ctx);
511 512
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
513 514 515
    }

    if (filter_grad) {
516 517 518 519 520
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
      args2.handle = handle;
      args2.idesc.set(transformed_output_grad, iwo_groups);
      args2.wdesc.set(*filter_grad, layout_tensor, iwo_groups);
      args2.odesc.set(input_transpose, iwo_groups);
A
AshburnLee 已提交
521 522
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
523 524 525
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
#else
526
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
527
#endif
528
      filter_algo = search2::Find<T>(args2, false, deterministic, ctx);
529 530
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
531 532 533 534 535 536 537 538
    }

    // ------------------- cudnn conv backward data ---------------------
    // FIXME(typhoonzero): template type T may not be the same as cudnn call.
    int input_offset = input->numel() / input->dims()[0] / groups;
    int output_grad_offset = transformed_output_grad.numel() /
                             transformed_output_grad.dims()[0] / groups;
    int filter_offset = filter->numel() / groups;
539 540
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;
541 542 543 544
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
    if (input_grad) {
      // Because beta is zero, it is unnecessary to reset input_grad.
      for (int g = 0; g < groups; g++) {
545 546 547 548 549 550 551 552 553 554 555 556
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, &beta, args1.odesc.desc(),
                  input_grad_data + input_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
557
        auto cudnn_func = [&](void* cudnn_workspace) {
558 559
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnConvolutionForward(
560 561 562 563 564
                  handle, &alpha, args1.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args1.wdesc.desc(),
                  filter_data + filter_offset * g, args1.cdesc.desc(),
                  data_algo, cudnn_workspace, workspace_size, &beta,
                  args1.odesc.desc(), input_grad_data + input_offset * g));
565
        };
566
#endif  // PADDLE_WITH_HIP
567
        workspace_handle.RunFunc(cudnn_func, workspace_size);
568 569
      }

W
wuhuanzhou 已提交
570
      if (data_layout == platform::DataLayout::kNHWC) {
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
        Tensor input_grad_transpose;
        Tensor input_grad_nchw;
        input_grad_nchw.ShareDataWith(*input_grad);
        input_grad_nchw.Resize(framework::make_ddim(input_vec));
        if (strides.size() == 2U) {
          std::vector<int> axis = {0, 2, 3, 1};
          DataTranspose<T, 4>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        } else if (strides.size() == 3U) {
          std::vector<int> axis = {0, 2, 3, 4, 1};
          DataTranspose<T, 5>(ctx, &input_grad_nchw, &input_grad_transpose,
                              axis);
          *input_grad = input_grad_transpose;
        }
      }
    }

    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      // Gradient with respect to the filter
      for (int g = 0; g < groups; g++) {
594 595 596 597 598 599 600 601 602 603 604 605
#ifdef PADDLE_WITH_HIP
        auto cudnn_func = [&](void* cudnn_workspace) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionBackwardWeights(
                  handle, &alpha, args2.odesc.desc(),
                  input_data + input_offset * g, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.cdesc.desc(),
                  filter_algo, &beta, args2.wdesc.desc(),
                  filter_grad_data + filter_offset * g, cudnn_workspace,
                  workspace_size));
        };
#else   // PADDLE_WITH_HIP
606
        auto cudnn_func = [&](void* cudnn_workspace) {
607 608
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::cudnnConvolutionBackwardFilter(
609 610 611 612 613
                  handle, &alpha, args2.idesc.desc(),
                  output_grad_data + output_grad_offset * g, args2.odesc.desc(),
                  input_data + input_offset * g, args2.cdesc.desc(),
                  filter_algo, cudnn_workspace, workspace_size, &beta,
                  args2.wdesc.desc(), filter_grad_data + filter_offset * g));
614
        };
615
#endif  // PADDLE_WITH_HIP
616
        workspace_handle.RunFunc(cudnn_func, workspace_size);
617 618 619 620 621
      }
    }
  }
};

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv_bp_data(W, ddI) + conv_bp_data(ddW, I)
 * dW = conv_bp_filter(dO, ddI)
 * dI = conv(dO, ddW)
 */
template <typename T>
class CUDNNConvTransposeDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");

    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");

    bool deterministic = FLAGS_cudnn_deterministic;

    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
    Tensor transformed_ddX_channel(X->type());

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
      if (dX) {
        transformed_dX_channel = *dX;
      }
    }
    std::vector<int> output_vec =
        framework::vectorize<int>(transformed_dO_channel.dims());

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dO(dO->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      std::vector<int> new_output_grad_shape_vec(data_dim + 2);

      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      new_output_grad_shape_vec[0] = transformed_dO_channel.dims()[0];
      new_output_grad_shape_vec[1] = transformed_dO_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];

        new_output_grad_shape_vec[i + 2] =
            transformed_dO_channel.dims()[i + 2] + padding_diff[i];

        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);

      framework::DDim new_output_grad_shape(
          framework::make_ddim(new_output_grad_shape_vec));
      transformed_dO.Resize(new_output_grad_shape);

      transformed_dO =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_output_grad_shape, dev_ctx);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (dO) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_dO_channel, pad_value,
                &transformed_dO);
          }

          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        case 5: {
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
        } break;
        default:
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
      }

    } else {
      transformed_X = transformed_X_channel;
      transformed_dO = transformed_dO_channel;
      if (ddX) {
        transformed_ddX = transformed_ddX_channel;
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    std::vector<int64_t> starts(data_dim, 0);
    std::vector<int64_t> ends(data_dim, 0);
    std::vector<int64_t> axes(data_dim, 0);
    for (size_t i = 0; i < data_dim; ++i) {
      starts[i] = input_pad[2 * i + 4] * (strides[i] + 1);
      ends[i] = starts[i] + output_vec[i + 2];
      axes[i] = i + 2;
    }

    std::vector<int> transformed_output_vec = output_vec;
    for (size_t i = 0; i < data_dim; ++i) {
      transformed_output_vec[i + 2] =
          output_vec[i + 2] +
          (input_pad[2 * i + 4] + input_pad[2 * i + 5]) * strides[i] -
          2 * padding_common[i] + paddings[2 * i] + paddings[2 * i + 1];
    }

    if (!is_sys_pad) {
      DDim transformed_output_shape(
          framework::make_ddim(transformed_output_vec));
      transformed_ddO_channel.mutable_data<T>(transformed_output_shape,
                                              ctx.GetPlace());
    } else {
      ddO->mutable_data<T>(ctx.GetPlace());
      transformed_ddO_channel = *ddO;
      transformed_ddO_channel.Resize(
          framework::make_ddim(transformed_output_vec));
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
#if CUDNN_VERSION_MIN(7, 0, 1)
    iwo_group = 1;
    c_group = groups;
    groups = 1;
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

    ConvArgs args1{&transformed_ddO_channel,
                   W,
                   &transformed_ddX,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{&transformed_ddO_channel, ddW,       &transformed_X, strides,
                   padding_common,           dilations, dtype};

    ConvArgs args3{&transformed_dO,
                   dW,
                   &transformed_ddX_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dO, ddW,  &transformed_dX_channel, strides, padding_common,
        dilations,       dtype};
907 908 909 910 911 912 913 914 915 916
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t bwd_algo1 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t bwd_algo2 =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t data_algo =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
917 918 919 920 921 922 923 924
    cudnnConvolutionBwdDataAlgo_t bwd_algo1 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t bwd_algo2 =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t data_algo =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
925
#endif
926

W
wuhuanzhou 已提交
927
    auto layout = GetCudnnTensorFormat(platform::DataLayout::kNCHW);
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;

    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddO_channel, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddX, iwo_group);
        args1.cdesc.set(dtype, padding_common, strides, dilations, c_group);
943 944 945
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
#else
946
        using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
947
#endif
948 949 950 951 952 953 954 955 956 957 958
        bwd_algo1 = search1::Find<T>(args1, false, deterministic, ctx);
        workspace_size = search1::GetWorkspaceSize(args1, bwd_algo1);
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_ddO_channel, iwo_group);
        args2.wdesc.set(*ddW, layout, iwo_group);
        args2.odesc.set(transformed_X, iwo_group);
        args2.cdesc.set(dtype, padding_common, strides, dilations, c_group);
959 960 961
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
#else
962
        using search2 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
963
#endif
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
        bwd_algo2 = search2::Find<T>(args2, false, deterministic, ctx);
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, bwd_algo2));
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_dO, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_ddX_channel, iwo_group);

      args3.cdesc.set(dtype, padding_common, strides, dilations, c_group);
979 980 981
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
#else
982
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
983
#endif
984 985 986 987 988 989 990 991 992 993 994 995 996
      filter_algo = search3::Find<T>(args3, false, deterministic, ctx);
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX_channel.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dO, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dX_channel, iwo_group);
      args4.cdesc.set(dtype, padding_common, strides, dilations, c_group);
997 998 999
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
#else
1000
      using search4 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1001
#endif
1002 1003 1004 1005 1006 1007
      data_algo = search4::Find<T>(args4, false, deterministic, ctx);
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
    }

    int i_n, i_c, i_d, i_h, i_w;
W
wuhuanzhou 已提交
1008 1009
    GetNCDHW(transformed_X.dims(), platform::DataLayout::kNCHW, &i_n, &i_c,
             &i_d, &i_h, &i_w);
1010 1011

    int o_n, o_c, o_d, o_h, o_w;
W
wuhuanzhou 已提交
1012 1013
    GetNCDHW(transformed_dO.dims(), platform::DataLayout::kNCHW, &o_n, &o_c,
             &o_d, &o_h, &o_w);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029

    int group_offset_in =
        transformed_X.numel() / transformed_X.dims()[0] / groups;
    int group_offset_out =
        transformed_dO.numel() / transformed_dO.dims()[0] / groups;
    int group_offset_filter = W->numel() / groups;

    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        bwd_algo1, &beta, args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.odesc.desc(),
                        ddx + i * group_offset_in, args1.cdesc.desc(),
                        bwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1056
#endif  // PADDLE_WITH_HIP
1057 1058 1059 1060
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionBackwardData(
                        handle, &alpha, args2.odesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        bwd_algo2, &alpha, args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else   // PADDLE_WITH_HIP
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionBackwardData(
                        handle, &alpha, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.odesc.desc(),
                        x + i * group_offset_in, args2.cdesc.desc(), bwd_algo2,
                        workspace_ptr, workspace_size, &alpha,
                        args2.idesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
              },
              workspace_size);
1087
#endif  // PADDLE_WITH_HIP
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
        }
      }
      if ((!is_sys_pad) && (!channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, ddO, starts, ends, axes);
        }
      } else if ((!is_sys_pad) && (channel_last)) {
        if (strides.size() == 2U) {
          Slice<paddle::platform::CUDADeviceContext, T, 4>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        } else if (!is_sys_pad && strides.size() == 3U) {
          Slice<paddle::platform::CUDADeviceContext, T, 5>(
              ctx, &transformed_ddO_channel, &transformed_ddO_channel, starts,
              ends, axes);
        }

        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }

    T* transformed_dy_channel = transformed_dO.data<T>();
    if (dW && ddX) {
      ddx = transformed_ddX_channel.data<T>();
      for (int i = 0; i < groups; i++) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args3.odesc.desc(),
                      ddx + i * group_offset_in, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, &beta,
                      args3.wdesc.desc(), dw + i * group_offset_filter,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.odesc.desc(), ddx + i * group_offset_in,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
            },
            workspace_size);
1144
#endif  // PADDLE_WITH_HIP
1145 1146 1147 1148 1149 1150
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in, workspace_ptr,
                      workspace_size));
            },
            workspace_size);
#else   // PADDLE_WITH_HIP
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionForward(
                      handle, &alpha, args4.idesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.odesc.desc(),
                      transformed_dx + i * group_offset_in));
            },
            workspace_size);
1177
#endif  // PADDLE_WITH_HIP
1178 1179 1180 1181 1182 1183 1184 1185 1186
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

1187 1188 1189 1190
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
1191
namespace plat = paddle::platform;
1192

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeOpKernel<float>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
                   ops::CUDNNConvTransposeGradOpKernel<float>);
#else
1213
REGISTER_OP_KERNEL(conv2d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1214
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1215 1216 1217
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv2d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1218
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1219 1220
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1221 1222 1223 1224 1225
REGISTER_OP_KERNEL(
    conv2d_transpose_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvTransposeDoubleGradOpKernel<plat::float16>);
1226 1227

REGISTER_OP_KERNEL(conv3d_transpose, CUDNN, ::paddle::platform::CUDAPlace,
1228
                   ops::CUDNNConvTransposeOpKernel<plat::float16>,
1229 1230 1231
                   ops::CUDNNConvTransposeOpKernel<float>,
                   ops::CUDNNConvTransposeOpKernel<double>);
REGISTER_OP_KERNEL(conv3d_transpose_grad, CUDNN, ::paddle::platform::CUDAPlace,
1232
                   ops::CUDNNConvTransposeGradOpKernel<plat::float16>,
1233 1234
                   ops::CUDNNConvTransposeGradOpKernel<float>,
                   ops::CUDNNConvTransposeGradOpKernel<double>);
1235
#endif