conv_cudnn_op.cu 55.6 KB
Newer Older
L
liym27 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the spopecific language governing permissions and
limitations under the License. */

#include <utility>
#include <vector>
17

L
liym27 已提交
18 19 20 21
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/memory/memory.h"
22 23 24
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
L
liym27 已提交
25
#include "paddle/fluid/operators/conv_cudnn_helper.h"
26
#endif
L
liym27 已提交
27
#include "paddle/fluid/operators/conv_op.h"
28
#include "paddle/fluid/operators/math/padding.h"
L
liym27 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"

DECLARE_bool(cudnn_deterministic);
DECLARE_uint64(conv_workspace_size_limit);
DECLARE_bool(cudnn_exhaustive_search);

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;

46 47 48 49
static inline bool IsVoltaOrLater(const platform::CUDADeviceContext& dev_ctx) {
  return dev_ctx.GetComputeCapability() >= 70;
}

L
liym27 已提交
50 51 52 53 54
template <typename T>
class CUDNNConvOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
55 56 57
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
58 59 60 61 62 63 64 65
    const Tensor* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");
    output->mutable_data<T>(ctx.GetPlace());
    const std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
66

L
liym27 已提交
67 68
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
69 70 71 72 73 74
    bool deterministic = FLAGS_cudnn_deterministic;
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));
L
liym27 已提交
75 76 77 78 79 80

    const std::string padding_algorithm =
        ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

81 82
    auto dtype = platform::CudnnDataType<T>::type;

83 84 85 86
#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
87 88 89 90 91 92 93 94
    // Tensor Core introduced from Volta GPUs supports more faster conv op
    // with FP16 in NHWC data format.
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    // We will only do data format conversion from NHWC to NCHW.
    // cudnn will convert NCHW to NHWC automatically on Tensor Core.
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
95
#endif
96 97 98 99
    VLOG(3) << "Compute ConvOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
100 101 102
    // ------------ transformed tensor -----------
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output(output->type());
103
    Tensor transformed_filter_channel(filter->type());
L
liym27 已提交
104
    T* output_data = nullptr;
105 106
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input tensor from NHWC to NCHW.";
L
liym27 已提交
107 108 109 110 111 112 113 114 115
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(ctx, output,
                                                           &transformed_output);

    } else {
116 117 118 119 120 121 122 123 124 125 126
      transformed_input_channel.ShareDataWith(*input);
      transformed_output.ShareDataWith(*output);
    }
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
L
liym27 已提交
127 128 129 130 131
    }
    output_data = transformed_output.data<T>();

    // update padding and dilation
    auto in_dims = transformed_input_channel.dims();
132
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
133
    framework::DDim in_data_dims;
134 135 136 137 138 139 140 141 142 143 144
    framework::DDim filter_data_dims;

    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
145 146 147 148 149 150

    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
151
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
152 153 154 155 156 157 158

    Tensor transformed_input;
    std::vector<int> padding_common(data_dim, 0);
    if (!is_sys_pad) {
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
159 160 161 162 163 164 165

      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
166 167 168 169 170 171

      std::vector<int> input_pad(transformed_input_channel.dims().size() * 2,
                                 0);
      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
172 173 174 175 176 177 178 179 180 181 182 183 184 185
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
200
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
201 202 203 204
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
205
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
206 207 208 209
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
210 211
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
212 213 214
      }

    } else {
215
      transformed_input.ShareDataWith(transformed_input_channel);
L
liym27 已提交
216 217 218 219 220 221 222 223 224 225 226 227
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
228
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
229 230

    // ------------------- cudnn descriptors ---------------------
231 232 233 234 235 236 237
    ConvArgs args{&transformed_input,
                  &transformed_filter_channel,
                  &transformed_output,
                  strides,
                  padding_common,
                  dilations,
                  dtype};
L
liym27 已提交
238 239 240

    auto handle = dev_ctx.cudnn_handle();
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
241 242 243 244 245
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
246 247 248 249
    }
    auto layout_format = GetCudnnTensorFormat(layout);

    args.handle = handle;
250 251 252 253 254

#ifdef PADDLE_WITH_HIP
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn(), groups);
#else
A
AshburnLee 已提交
255 256
    args.cdesc.set(dtype, padding_common, strides, dilations,
                   platform::AllowTF32Cudnn());
257
#endif
L
liym27 已提交
258

259
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
260 261 262
    // cudnn 7 can support groups, no need to do it manually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
263 264 265
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnSetConvolutionGroupCount(args.cdesc.desc(),
                                                         groups));
L
liym27 已提交
266 267
    groups = 1;
#endif
268 269 270
    args.idesc.set(transformed_input, layout_format);
    args.wdesc.set(transformed_filter_channel, layout_format, groups);
    args.odesc.set(transformed_output, layout_format);
L
liym27 已提交
271 272
    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
273 274 275 276 277 278 279 280 281 282 283 284

    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNHWC, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
               &o_h, &o_w);
    }
L
liym27 已提交
285 286 287

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
288
    int group_offset_filter = transformed_filter_channel.numel() / groups;
L
liym27 已提交
289 290
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size = 0;  // final workspace to allocate.
291 292 293 294 295
// ------------------- cudnn conv algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t algo{};
    using search = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
#else
L
liym27 已提交
296 297
    cudnnConvolutionFwdAlgo_t algo{};
    using search = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
298
#endif
299
    algo = search::Find<T>(args, exhaustive_search, false, ctx);
L
liym27 已提交
300 301
    workspace_size = search::GetWorkspaceSize(args, algo);

302
#if defined(PADDLE_WITH_CUDA) && CUDNN_VERSION_MIN(7, 0, 1)
303 304 305 306 307 308 309 310 311
    // when groups > 1, SearchAlgorithm find algo is CUDNN_CONVOLUTION_\
    // FWD_ALGO_WINOGRAD_NONFUSED, but this kind of algorithm is unstable
    // in forward computation, so change the algorithm to CUDNN_CONVOLUTION_\
    // FWD_ALGO_IMPLICIT_GEMM manually.
    if (ctx.Attr<int>("groups") > 1) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(0);
    }
#endif

L
liym27 已提交
312
    // ------------------- cudnn conv forward ---------------------
313
    ScalingParamType<T> alpha = 1.0f;
314 315
    ScalingParamType<T> beta = 0.0f;

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
// NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
// ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
// VLOG(4) << "Conv: use_addto = " << ctx.Attr<bool>("use_addto");

#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* workspace_ptr) {
          PADDLE_ENFORCE_CUDA_SUCCESS(
              platform::dynload::miopenConvolutionForward(
                  handle, &alpha, args.idesc.desc(), input_data,
                  args.wdesc.desc(), filter_data, args.cdesc.desc(), algo,
                  &beta, args.odesc.desc(), output_data, workspace_ptr,
                  workspace_size));
        },
        workspace_size);
#else
L
liym27 已提交
332 333 334
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* workspace_ptr) {
335 336 337 338 339 340 341
            PADDLE_ENFORCE_CUDA_SUCCESS(
                platform::dynload::cudnnConvolutionForward(
                    handle, &alpha, args.idesc.desc(),
                    input_data + i * group_offset_in, args.wdesc.desc(),
                    filter_data + i * group_offset_filter, args.cdesc.desc(),
                    algo, workspace_ptr, workspace_size, &beta,
                    args.odesc.desc(), output_data + i * group_offset_out));
L
liym27 已提交
342 343 344
          },
          workspace_size);
    }
345
#endif
L
liym27 已提交
346

347
    if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
348 349 350 351 352 353 354 355 356 357 358
      TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
          ctx, &transformed_output, output);
    }
  }
};

template <typename T>
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
359 360 361
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (input_grad) {
      input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (filter_grad) {
      filter_grad->mutable_data<T>(ctx.GetPlace());
    }

    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    int groups = ctx.Attr<int>("groups");
380

L
liym27 已提交
381 382 383
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
384 385 386 387 388 389
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
390 391 392
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

393
    auto dtype = platform::CudnnDataType<T>::type;
394 395 396 397 398

#ifdef PADDLE_WITH_HIP
    // HIP MIOPEN ONLY SUPPORT NCHW format
    auto compute_format = DataLayout::kNCHW;
#else
399 400 401 402
    const bool compute_in_nhwc =
        dtype == CUDNN_DATA_HALF && IsVoltaOrLater(dev_ctx);
    auto compute_format =
        compute_in_nhwc && channel_last ? DataLayout::kNHWC : DataLayout::kNCHW;
403
#endif
404 405 406 407
    VLOG(3) << "Compute ConvGradOp with cuDNN:"
            << " data_format=" << data_format << " compute_format="
            << (compute_format == DataLayout::kNHWC ? "NHWC" : "NCHW");

L
liym27 已提交
408 409 410 411
    // transform Tensor
    Tensor transformed_input_channel(input->type());
    Tensor transformed_output_grad_channel(output_grad->type());
    Tensor transformed_input_grad_channel(input->type());
412 413
    Tensor transformed_filter_channel(filter->type());
    Tensor transformed_filter_grad_channel(filter->type());
L
liym27 已提交
414

415 416 417
    if (channel_last && compute_format == DataLayout::kNCHW) {
      VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
                 "NHWC to NCHW.";
L
liym27 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, input, &transformed_input_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, output_grad, &transformed_output_grad_channel);

      if (input_grad) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, input_grad, &transformed_input_grad_channel);
431 432 433 434 435 436
        // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
        // the data of input_grad to transformed_input_grad_channel.
        if (ctx.Attr<bool>("use_addto")) {
          TransToChannelFirst<platform::CUDADeviceContext, T>(
              ctx, input_grad, &transformed_input_grad_channel);
        }
L
liym27 已提交
437 438
      }
    } else {
439 440
      transformed_input_channel.ShareDataWith(*input);
      transformed_output_grad_channel.ShareDataWith(*output_grad);
L
liym27 已提交
441 442 443 444 445
      if (input_grad) {
        transformed_input_grad_channel.ShareDataWith(*input_grad);
      }
    }

446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    if (compute_format == DataLayout::kNHWC) {
      VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
      ResizeToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);
      TransToChannelLast<platform::CUDADeviceContext, T>(
          ctx, filter, &transformed_filter_channel);

      if (filter_grad) {
        ResizeToChannelLast<platform::CUDADeviceContext, T>(
            ctx, filter_grad, &transformed_filter_grad_channel);
      }
    } else {
      transformed_filter_channel.ShareDataWith(*filter);
      if (filter_grad) {
        transformed_filter_grad_channel.ShareDataWith(*filter_grad);
      }
    }

L
liym27 已提交
464 465
    //  update paddings
    auto in_dims = transformed_input_channel.dims();
466
    auto filter_dims = transformed_filter_channel.dims();
L
liym27 已提交
467
    framework::DDim in_data_dims;
468 469 470 471 472 473 474 475 476 477
    framework::DDim filter_data_dims;
    if (compute_format == DataLayout::kNCHW) {
      in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
      filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
    } else {
      in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
      filter_data_dims =
          framework::slice_ddim(filter_dims, 1, filter_dims.size() - 1);
    }
L
liym27 已提交
478 479 480 481 482 483 484
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    // cuDNN only supports padding the same amount on every dimension.
    // So we create a new padded input tensor.
    int data_dim = strides.size();  // 2d or 3d
485
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
486 487 488 489 490 491 492 493 494 495
    Tensor transformed_input(input->type());
    Tensor transformed_input_grad(input->type());
    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_input_channel.dims()[0];
496 497 498 499 500 501
      if (compute_format == DataLayout::kNCHW) {
        new_input_shape_vec[1] = transformed_input_channel.dims()[1];
      } else {
        new_input_shape_vec[data_dim + 1] =
            transformed_input_channel.dims()[data_dim + 1];
      }
L
liym27 已提交
502 503 504 505

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
506 507 508 509 510 511 512 513 514 515 516 517 518 519
        if (compute_format == DataLayout::kNCHW) {
          new_input_shape_vec[i + 2] =
              transformed_input_channel.dims()[i + 2] + padding_diff[i];
        } else {
          new_input_shape_vec[i + 1] =
              transformed_input_channel.dims()[i + 1] + padding_diff[i];
        }
        if (compute_format == DataLayout::kNCHW) {
          input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
        } else {
          input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
          input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
        }
L
liym27 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_input.Resize(new_input_shape);

      transformed_input_grad.Resize(new_input_shape);
      auto& dev_ctx =
          ctx.template device_context<paddle::platform::CUDADeviceContext>();

      transformed_input =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
      if (input_grad) {
        transformed_input_grad =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
      // pad for input
      const int rank = transformed_input_channel.dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
542
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
543 544 545 546
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        case 5: {
547
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
548 549 550 551
              ctx, input_pad, transformed_input_channel, pad_value,
              &transformed_input);
        } break;
        default:
552 553
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
      }
    } else {
      transformed_input.ShareDataWith(transformed_input_channel);
      if (input_grad) {
        transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
      }
      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* input_data = transformed_input.data<T>();
    const T* output_grad_data = transformed_output_grad_channel.data<T>();
573
    const T* filter_data = transformed_filter_channel.data<T>();
L
liym27 已提交
574 575 576 577 578
    T* filter_grad_data = nullptr;
    T* input_grad_data = nullptr;
    T* transformed_input_grad_data = nullptr;

    ConvArgs args1{&transformed_input_grad,
579
                   &transformed_filter_channel,
L
liym27 已提交
580 581 582
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
583 584
                   dilations,
                   dtype};
L
liym27 已提交
585
    ConvArgs args2{&transformed_input,
586
                   &transformed_filter_grad_channel,
L
liym27 已提交
587 588 589
                   &transformed_output_grad_channel,
                   strides,
                   padding_common,
590 591
                   dilations,
                   dtype};
L
liym27 已提交
592 593

    auto handle = dev_ctx.cudnn_handle();
594 595 596 597 598
    DataLayout layout = compute_format == DataLayout::kNHWC ? DataLayout::kNHWC
                                                            : DataLayout::kNCHW;
    if (transformed_input.dims().size() == 5) {
      layout = compute_format == DataLayout::kNHWC ? DataLayout::kNDHWC
                                                   : DataLayout::kNCDHW;
L
liym27 已提交
599 600 601 602 603 604
    }
    auto layout_tensor = GetCudnnTensorFormat(layout);
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();

    int i_n, i_c, i_d, i_h, i_w;
    int o_n, o_c, o_d, o_h, o_w;
605 606 607 608 609 610 611 612 613 614 615
    if (compute_format == DataLayout::kNHWC) {
      GetNCDHW(transformed_input.dims(), DataLayout::kNHWC, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNHWC, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    } else {
      GetNCDHW(transformed_input.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d,
               &i_h, &i_w);
      GetNCDHW(transformed_output_grad_channel.dims(), DataLayout::kNCHW, &o_n,
               &o_c, &o_d, &o_h, &o_w);
    }
L
liym27 已提交
616 617 618

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
619
    int group_offset_filter = transformed_filter_channel.numel() / groups;
620 621 622 623 624 625 626
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
627 628 629 630
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
631
#endif
L
liym27 已提交
632
    size_t workspace_size = 0;
633 634
    int iwo_groups = groups;
    int c_groups = 1;
L
liym27 已提交
635

636
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
637 638 639 640 641 642 643 644 645 646
    iwo_groups = 1;
    c_groups = groups;
    groups = 1;
#endif

    if (input_grad) {
      // ------------------- cudnn descriptors ---------------------
      input_grad_data = input_grad->data<T>();
      transformed_input_grad_data = transformed_input_grad.data<T>();
      args1.handle = handle;
647 648 649
      args1.idesc.set(transformed_input_grad, layout_tensor);
      args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
      args1.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
650 651
      args1.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
L
liym27 已提交
652

653 654 655
#ifdef PADDLE_WITH_HIP
      using search1 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
#else
L
liym27 已提交
656
      using search1 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
657
#endif
L
liym27 已提交
658
      data_algo =
659
          search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
L
liym27 已提交
660 661 662 663 664 665
      workspace_size =
          std::max(workspace_size, search1::GetWorkspaceSize(args1, data_algo));
    }

    if (filter_grad) {
      // ------------------- cudnn descriptors ---------------------
666
      filter_grad_data = transformed_filter_grad_channel.data<T>();
L
liym27 已提交
667
      args2.handle = handle;
668 669 670 671
      args2.idesc.set(transformed_input, layout_tensor);
      args2.wdesc.set(transformed_filter_grad_channel, layout_tensor,
                      iwo_groups);
      args2.odesc.set(transformed_output_grad_channel, layout_tensor);
A
AshburnLee 已提交
672 673
      args2.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_groups);
674 675 676
#ifdef PADDLE_WITH_HIP
      using search2 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
#else
L
liym27 已提交
677
      using search2 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
678
#endif
L
liym27 已提交
679
      filter_algo =
680
          search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
L
liym27 已提交
681 682 683 684 685
      workspace_size = std::max(workspace_size,
                                search2::GetWorkspaceSize(args2, filter_algo));
    }

    // ------------------- cudnn conv backward data ---------------------
686 687 688 689
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f : 0.0f;
    VLOG(4) << "Conv_grad: use_addto = " << ctx.Attr<bool>("use_addto");

L
liym27 已提交
690
    if (input_grad) {
691 692
      // When beta is 0, it is unnecessary to reset input_grad.
      // When beta is 1, the output cannot be reset since addt strategy used.
L
liym27 已提交
693
      for (int i = 0; i < groups; i++) {
694 695 696 697 698 699 700 701 702 703 704 705 706 707
#ifdef PADDLE_WITH_HIP
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.wdesc.desc(), filter_data + i * group_offset_filter,
                      args1.cdesc.desc(), data_algo, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in,
                      cudnn_workspace_ptr, workspace_size));
            },
            workspace_size);
#else
L
liym27 已提交
708 709
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
710 711 712 713 714 715 716 717
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args1.wdesc.desc(),
                      filter_data + i * group_offset_filter, args1.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args1.cdesc.desc(), data_algo, cudnn_workspace_ptr,
                      workspace_size, &beta, args1.idesc.desc(),
                      transformed_input_grad_data + i * group_offset_in));
L
liym27 已提交
718 719
            },
            workspace_size);
720
#endif
L
liym27 已提交
721 722
      }

W
wangchaochaohu 已提交
723 724 725
      if (!is_sys_pad) {
        std::vector<int> starts(transformed_input_channel.dims().size(), 0);
        std::vector<int> axes(transformed_input_channel.dims().size(), 0);
L
liym27 已提交
726

W
wangchaochaohu 已提交
727 728 729 730
        for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
L
liym27 已提交
731

W
wangchaochaohu 已提交
732 733
        transformed_input_grad_channel.mutable_data(ctx.GetPlace());
        if (transformed_input_channel.dims().size() == 4) {
734
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
735 736 737
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        } else {
738
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
739 740 741
              ctx, &transformed_input_grad, &transformed_input_grad_channel,
              starts, axes);
        }
L
liym27 已提交
742 743
      }

744
      if (channel_last && compute_format == DataLayout::kNCHW) {
L
liym27 已提交
745 746 747 748
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_input_grad_channel, input_grad);
      }
    }
749 750 751

    // filter_grad do not use inplace addto.
    ScalingParamType<T> beta_filter = 0.0f;
L
liym27 已提交
752 753 754 755
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      // Because beta is zero, it is unnecessary to reset filter_grad.
      for (int i = 0; i < groups; i++) {
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
#ifdef PADDLE_WITH_HIP
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.idesc.desc(), input_data + i * group_offset_in,
                      args2.cdesc.desc(), filter_algo, &beta,
                      args2.wdesc.desc(),
                      filter_grad_data + i * group_offset_filter,
                      cudnn_workspace_ptr, workspace_size));
            },
            workspace_size);
#else
L
liym27 已提交
771 772
        workspace_handle.RunFunc(
            [&](void* cudnn_workspace_ptr) {
773 774 775 776 777 778
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args2.idesc.desc(),
                      input_data + i * group_offset_in, args2.odesc.desc(),
                      output_grad_data + i * group_offset_out,
                      args2.cdesc.desc(), filter_algo, cudnn_workspace_ptr,
779
                      workspace_size, &beta_filter, args2.wdesc.desc(),
780
                      filter_grad_data + i * group_offset_filter));
L
liym27 已提交
781 782
            },
            workspace_size);
783
#endif
L
liym27 已提交
784
      }
785 786 787 788 789

      if (compute_format == DataLayout::kNHWC) {
        TransToChannelFirst<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_filter_grad_channel, filter_grad);
      }
L
liym27 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
    }
  }
};

/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 * ddo = conv(ddI, W) + conv(I, ddW)
 * dW = conv_bp_filter(ddI, dO)
 * dI = conv_bp_data(ddW, dO)
 */
template <typename T>
class CUDNNConvDoubleGradOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
806 807 808
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        paddle::platform::errors::PreconditionNotMet("It must use CUDAPlace."));
L
liym27 已提交
809 810 811 812 813 814 815 816 817 818 819
    auto X = ctx.Input<Tensor>("Input");
    auto W = ctx.Input<Tensor>("Filter");
    auto dO = ctx.Input<Tensor>("DOutput");
    auto ddX = ctx.Input<Tensor>("DDInput");
    auto ddW = ctx.Input<Tensor>("DDFilter");

    auto ddO = ctx.Output<Tensor>("DDOutput");
    auto dW = ctx.Output<Tensor>("DFilter");
    auto dX = ctx.Output<Tensor>("DInput");
    if (ddO) {
      ddO->mutable_data<T>(ctx.GetPlace());
L
lvmengsi 已提交
820 821
      math::SetConstant<platform::CUDADeviceContext, T> set_zero;
      set_zero(dev_ctx, ddO, static_cast<T>(0));
L
liym27 已提交
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
    }
    if (dW) {
      dW->mutable_data<T>(ctx.GetPlace());
    }
    if (dX) {
      dX->mutable_data<T>(ctx.GetPlace());
    }

    // const T* x = X->data<T>();
    const T* dy = dO->data<T>();
    const T* w = W->data<T>();

    const T* ddx = nullptr;
    const T* ddw = nullptr;
    T *dw, *dx, *ddy;
    dw = dx = ddy = nullptr;
    T* transformed_dx = nullptr;
    const std::vector<int>& strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
842

L
liym27 已提交
843 844 845
    bool exhaustive_search =
        FLAGS_cudnn_exhaustive_search || ctx.Attr<bool>("exhaustive_search");
    bool deterministic = FLAGS_cudnn_deterministic;
846 847 848 849 850 851
    auto exhaustive_deterministic = exhaustive_search && deterministic;
    PADDLE_ENFORCE_EQ(exhaustive_deterministic, false,
                      platform::errors::InvalidArgument(
                          "Cann't set exhaustive_search True and "
                          "FLAGS_cudnn_deterministic True at same time."));

L
liym27 已提交
852 853 854 855 856 857 858 859 860
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");

    std::string padding_algorithm = ctx.Attr<std::string>("padding_algorithm");
    const std::string data_format = ctx.Attr<std::string>("data_format");
    const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

    // transform Tensors to channel first-----------
    Tensor transformed_X_channel(X->type());
    Tensor transformed_dO_channel(dO->type());
L
lvmengsi 已提交
861
    Tensor transformed_ddX_channel(X->type());
L
liym27 已提交
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876

    Tensor transformed_ddO_channel(dO->type());
    Tensor transformed_dX_channel(X->type());

    if (channel_last) {
      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, X, &transformed_X_channel);

      ResizeToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);
      TransToChannelFirst<platform::CUDADeviceContext, T>(
          ctx, dO, &transformed_dO_channel);

L
lvmengsi 已提交
877 878 879 880 881 882
      if (ddX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
        TransToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddX, &transformed_ddX_channel);
      }
L
liym27 已提交
883 884 885 886 887 888 889 890 891 892 893 894 895 896

      if (ddO) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, ddO, &transformed_ddO_channel);
      }
      if (dX) {
        ResizeToChannelFirst<platform::CUDADeviceContext, T>(
            ctx, dX, &transformed_dX_channel);
        transformed_dX_channel.mutable_data<T>(ctx.GetPlace());
      }

    } else {
      transformed_X_channel = *X;
      transformed_dO_channel = *dO;
L
lvmengsi 已提交
897 898 899
      if (ddX) {
        transformed_ddX_channel = *ddX;
      }
L
liym27 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
      if (ddO) {
        transformed_ddO_channel.ShareDataWith(*ddO);
      }
      if (dX) {
        transformed_dX_channel.ShareDataWith(*dX);
      }
    }

    auto in_dims = transformed_X_channel.dims();
    auto filter_dims = W->dims();
    framework::DDim in_data_dims =
        framework::slice_ddim(in_dims, 2, in_dims.size());
    framework::DDim filter_data_dims =
        framework::slice_ddim(filter_dims, 2, filter_dims.size());
    std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
    UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                             in_data_dims, strides, ksize);

    int data_dim = strides.size();  // 2d or 3d
919
    bool is_sys_pad = math::IsSymmetricPadding(paddings, data_dim);
L
liym27 已提交
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    Tensor transformed_X(X->type());
    Tensor transformed_ddX(X->type());

    Tensor transformed_dX(X->type());

    std::vector<int> padding_common(data_dim, 0);
    std::vector<int> input_pad(X->dims().size() * 2, 0);

    if (!is_sys_pad) {
      // get pad
      std::vector<int> padding_diff(data_dim);
      std::vector<int> new_input_shape_vec(data_dim + 2);
      new_input_shape_vec[0] = transformed_X_channel.dims()[0];
      new_input_shape_vec[1] = transformed_X_channel.dims()[1];

      for (size_t i = 0; i < data_dim; ++i) {
        padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
        padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
        new_input_shape_vec[i + 2] =
            transformed_X_channel.dims()[i + 2] + padding_diff[i];
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
      framework::DDim new_input_shape(
          framework::make_ddim(new_input_shape_vec));
      transformed_X.Resize(new_input_shape);
      transformed_ddX.Resize(new_input_shape);
      transformed_dX.Resize(new_input_shape);

      transformed_X =
          ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
              new_input_shape, dev_ctx);
L
lvmengsi 已提交
952 953 954 955 956
      if (ddX) {
        transformed_ddX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }
L
liym27 已提交
957 958 959 960 961 962 963 964 965 966 967
      if (dX) {
        transformed_dX =
            ctx.AllocateTmpTensor<T, paddle::platform::CUDADeviceContext>(
                new_input_shape, dev_ctx);
      }

      // pad for input
      const int rank = X->dims().size();
      T pad_value(0.0);
      switch (rank) {
        case 4: {
968
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
L
liym27 已提交
969
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
970 971 972 973 974
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 4>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
975 976
        } break;
        case 5: {
977
          math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
L
liym27 已提交
978
              ctx, input_pad, transformed_X_channel, pad_value, &transformed_X);
L
lvmengsi 已提交
979 980 981 982 983
          if (ddX) {
            math::PadFunction<paddle::platform::CUDADeviceContext, T, 5>(
                ctx, input_pad, transformed_ddX_channel, pad_value,
                &transformed_ddX);
          }
L
liym27 已提交
984 985
        } break;
        default:
986 987
          PADDLE_THROW(platform::errors::InvalidArgument(
              "ConvOp only support tensors with 4 or 5 dimensions."));
L
liym27 已提交
988 989 990 991
      }

    } else {
      transformed_X.ShareDataWith(transformed_X_channel);
L
lvmengsi 已提交
992 993 994
      if (ddX) {
        transformed_ddX.ShareDataWith(transformed_ddX_channel);
      }
L
liym27 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
      if (dX) {
        transformed_dX.ShareDataWith(transformed_dX_channel);
      }

      if (paddings.size() == data_dim) {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[i];
        }
      } else {
        for (size_t i = 0; i < data_dim; ++i) {
          padding_common[i] = paddings[2 * i];
        }
      }
    }

    const T* x = transformed_X.data<T>();

    int iwo_group = groups;
    int c_group = 1;
1014
#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
L
liym27 已提交
1015 1016
    iwo_group = 1;
    c_group = groups;
1017
    groups = 1;
L
liym27 已提交
1018 1019 1020 1021 1022
#endif
    auto dtype = platform::CudnnDataType<T>::type;

    auto handle = dev_ctx.cudnn_handle();

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    ConvArgs args1{&transformed_ddX,
                   W,
                   &transformed_ddO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args2{
        &transformed_X, ddW,  &transformed_ddO_channel, strides, padding_common,
        dilations,      dtype};
    ConvArgs args3{&transformed_ddX,
                   dW,
                   &transformed_dO_channel,
                   strides,
                   padding_common,
                   dilations,
                   dtype};
    ConvArgs args4{
        &transformed_dX, ddW,  &transformed_dO_channel, strides, padding_common,
        dilations,       dtype};
L
liym27 已提交
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
#ifdef PADDLE_WITH_HIP
    miopenConvFwdAlgorithm_t fwd_algo1 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvFwdAlgorithm_t fwd_algo2 =
        static_cast<miopenConvFwdAlgorithm_t>(0);
    miopenConvBwdDataAlgorithm_t data_algo =
        static_cast<miopenConvBwdDataAlgorithm_t>(0);
    miopenConvBwdWeightsAlgorithm_t filter_algo =
        static_cast<miopenConvBwdWeightsAlgorithm_t>(0);
#else
L
liym27 已提交
1054 1055 1056 1057 1058 1059 1060 1061
    cudnnConvolutionFwdAlgo_t fwd_algo1 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionFwdAlgo_t fwd_algo2 =
        static_cast<cudnnConvolutionFwdAlgo_t>(0);
    cudnnConvolutionBwdDataAlgo_t data_algo =
        static_cast<cudnnConvolutionBwdDataAlgo_t>(0);
    cudnnConvolutionBwdFilterAlgo_t filter_algo =
        static_cast<cudnnConvolutionBwdFilterAlgo_t>(0);
1062
#endif
L
liym27 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077

    auto layout = GetCudnnTensorFormat(DataLayout::kNCHW);

    // ddo = conv(ddI, W) + conv(I, ddW)
    size_t workspace_size = 0;

    T* transformed_ddy_channel = nullptr;
    if (ddO) {
      ddy = ddO->data<T>();
      transformed_ddy_channel = transformed_ddO_channel.data<T>();
      if (ddX) {
        args1.handle = handle;
        args1.idesc.set(transformed_ddX, iwo_group);
        args1.wdesc.set(*W, layout, iwo_group);
        args1.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1078 1079
        args1.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1080

1081 1082 1083
#ifdef PADDLE_WITH_HIP
        using search1 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
#else
L
liym27 已提交
1084
        using search1 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1085
#endif
1086
        fwd_algo1 = search1::Find<T>(args1, exhaustive_search, false, ctx);
L
liym27 已提交
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
        workspace_size = search1::GetWorkspaceSize(args1, fwd_algo1);
      }

      if (ddW) {
        ddw = ddW->data<T>();
        args2.handle = handle;
        args2.idesc.set(transformed_X, iwo_group);

        args2.wdesc.set(*ddW, layout, iwo_group);

        args2.odesc.set(transformed_ddO_channel, iwo_group);
A
AshburnLee 已提交
1098 1099
        args2.cdesc.set(dtype, padding_common, strides, dilations,
                        platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1100

1101 1102 1103
#ifdef PADDLE_WITH_HIP
        using search2 = SearchAlgorithm<miopenConvFwdAlgorithm_t>;
#else
L
liym27 已提交
1104
        using search2 = SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t>;
1105
#endif
1106
        fwd_algo2 = search2::Find<T>(args2, exhaustive_search, false, ctx);
L
liym27 已提交
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
        workspace_size = std::max(workspace_size,
                                  search2::GetWorkspaceSize(args2, fwd_algo2));
      }
    }

    if (dW && ddX) {
      dw = dW->data<T>();
      args3.handle = handle;
      args3.idesc.set(transformed_ddX, iwo_group);
      args3.wdesc.set(*dW, layout, iwo_group);

      args3.odesc.set(transformed_dO_channel, iwo_group);

A
AshburnLee 已提交
1120 1121
      args3.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1122

1123 1124 1125
#ifdef PADDLE_WITH_HIP
      using search3 = SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
#else
L
liym27 已提交
1126
      using search3 = SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
1127
#endif
L
liym27 已提交
1128
      filter_algo =
1129
          search3::Find<T>(args3, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
      workspace_size = std::max(workspace_size,
                                search3::GetWorkspaceSize(args3, filter_algo));
    }

    if (ddW && dX) {
      transformed_dx = transformed_dX.data<T>();

      args4.handle = handle;
      args4.idesc.set(transformed_dX, iwo_group);
      args4.wdesc.set(*ddW, layout, iwo_group);
      args4.odesc.set(transformed_dO_channel, iwo_group);
A
AshburnLee 已提交
1141 1142
      args4.cdesc.set(dtype, padding_common, strides, dilations,
                      platform::AllowTF32Cudnn(), c_group);
L
liym27 已提交
1143

1144 1145 1146
#ifdef PADDLE_WITH_HIP
      using search4 = SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
#else
L
liym27 已提交
1147
      using search4 = SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
1148
#endif
L
liym27 已提交
1149
      data_algo =
1150
          search4::Find<T>(args4, exhaustive_search, deterministic, ctx);
L
liym27 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
      workspace_size =
          std::max(workspace_size, search4::GetWorkspaceSize(args4, data_algo));
    }

    int i_n, i_c, i_d, i_h, i_w;
    GetNCDHW(transformed_X.dims(), DataLayout::kNCHW, &i_n, &i_c, &i_d, &i_h,
             &i_w);

    int o_n, o_c, o_d, o_h, o_w;
    GetNCDHW(transformed_dO_channel.dims(), DataLayout::kNCHW, &o_n, &o_c, &o_d,
             &o_h, &o_w);

    int group_offset_in = i_c / groups * i_h * i_w * i_d;
    int group_offset_out = o_c / groups * o_h * o_w * o_d;
    int group_offset_filter = W->numel() / groups;

1167 1168 1169 1170 1171 1172 1173
    ScalingParamType<T> alpha = 1.0f;
    ScalingParamType<T> beta = 0.0f;

    // NOTE(zhiqiu): inplace addto is not supportted in double grad yet.
    // ScalingParamType<T> beta = ctx.Attr<bool>("use_addto") ? 1.0f :
    // 0.0f;
    // VLOG(4) << "Conv_grad_grad: use_addto = " << ctx.Attr<bool>("use_addto");
L
liym27 已提交
1174 1175 1176 1177 1178 1179
    auto wkspace_handle = dev_ctx.cudnn_workspace_handle();

    if (ddO) {
      if (ddX) {
        ddx = transformed_ddX.data<T>();
        for (int i = 0; i < groups; i++) {
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
#ifdef PADDLE_WITH_HIP
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, &beta, args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else
L
liym27 已提交
1194 1195
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1196 1197 1198 1199 1200 1201 1202 1203
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args1.idesc.desc(),
                        ddx + i * group_offset_in, args1.wdesc.desc(),
                        w + i * group_offset_filter, args1.cdesc.desc(),
                        fwd_algo1, workspace_ptr, workspace_size, &beta,
                        args1.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1204 1205
              },
              workspace_size);
1206
#endif
L
liym27 已提交
1207 1208 1209 1210
        }
      }
      if (ddW) {
        for (int i = 0; i < groups; i++) {
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef PADDLE_WITH_HIP
          // MIOPEN ONLY support beta to be 0.0f
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::miopenConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, &beta, args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out,
                        workspace_ptr, workspace_size));
              },
              workspace_size);
#else
L
liym27 已提交
1226 1227
          wkspace_handle.RunFunc(
              [&](void* workspace_ptr) {
1228 1229 1230 1231 1232 1233 1234 1235
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::cudnnConvolutionForward(
                        handle, &alpha, args2.idesc.desc(),
                        x + i * group_offset_in, args2.wdesc.desc(),
                        ddw + i * group_offset_filter, args2.cdesc.desc(),
                        fwd_algo2, workspace_ptr, workspace_size, &alpha,
                        args2.odesc.desc(),
                        transformed_ddy_channel + i * group_offset_out));
L
liym27 已提交
1236 1237
              },
              workspace_size);
1238
#endif
L
liym27 已提交
1239 1240 1241 1242 1243 1244 1245
        }
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_ddO_channel, ddO);
      }
    }
L
lvmengsi 已提交
1246
    T* transformed_dy_channel = transformed_dO_channel.data<T>();
L
liym27 已提交
1247 1248 1249
    if (dW && ddX) {
      ddx = transformed_ddX.data<T>();
      for (int i = 0; i < groups; i++) {
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardWeights(
                      handle, &alpha, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.idesc.desc(), ddx + i * group_offset_in,
                      args3.cdesc.desc(), filter_algo, &beta,
                      args3.wdesc.desc(), dw + i * group_offset_filter,
                      workspace_ptr, workspace_size));
            },
            workspace_size);
#else
L
liym27 已提交
1264 1265
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1266 1267 1268 1269 1270 1271 1272 1273
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardFilter(
                      handle, &alpha, args3.idesc.desc(),
                      ddx + i * group_offset_in, args3.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args3.cdesc.desc(), filter_algo, workspace_ptr,
                      workspace_size, &beta, args3.wdesc.desc(),
                      dw + i * group_offset_filter));
L
liym27 已提交
1274 1275
            },
            workspace_size);
1276
#endif
L
liym27 已提交
1277 1278 1279 1280 1281 1282
      }
    }

    if (dX && ddW) {
      ddw = ddW->data<T>();
      for (int i = 0; i < groups; i++) {
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
#ifdef PADDLE_WITH_HIP
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::miopenConvolutionBackwardData(
                      handle, &alpha, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.wdesc.desc(), ddw + i * group_offset_filter,
                      args4.cdesc.desc(), data_algo, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in, workspace_ptr,
                      workspace_size));
            },
            workspace_size);
#else
L
liym27 已提交
1297 1298
        wkspace_handle.RunFunc(
            [&](void* workspace_ptr) {
1299 1300 1301 1302 1303 1304 1305 1306
              PADDLE_ENFORCE_CUDA_SUCCESS(
                  platform::dynload::cudnnConvolutionBackwardData(
                      handle, &alpha, args4.wdesc.desc(),
                      ddw + i * group_offset_filter, args4.odesc.desc(),
                      transformed_dy_channel + i * group_offset_out,
                      args4.cdesc.desc(), data_algo, workspace_ptr,
                      workspace_size, &beta, args4.idesc.desc(),
                      transformed_dx + i * group_offset_in));
L
liym27 已提交
1307 1308
            },
            workspace_size);
1309
#endif
L
liym27 已提交
1310 1311
      }

W
wangchaochaohu 已提交
1312 1313 1314 1315
      if (!is_sys_pad) {
        // reverse padded input
        std::vector<int> starts(X->dims().size(), 0);
        std::vector<int> axes(X->dims().size(), 0);
L
liym27 已提交
1316

W
wangchaochaohu 已提交
1317 1318 1319 1320 1321
        for (size_t i = 0; i < X->dims().size(); ++i) {
          starts[i] = input_pad[2 * i];
          axes[i] = i;
        }
        if (X->dims().size() == 4) {
1322
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 4>(
W
wangchaochaohu 已提交
1323 1324
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        } else {
1325
          RemovePaddingSlice<paddle::platform::CUDADeviceContext, T, 5>(
W
wangchaochaohu 已提交
1326 1327
              ctx, &transformed_dX, &transformed_dX_channel, starts, axes);
        }
L
liym27 已提交
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
      }
      if (channel_last) {
        TransToChannelLast<paddle::platform::CUDADeviceContext, T>(
            ctx, &transformed_dX_channel, dX);
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace plat = paddle::platform;
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
#else
L
liym27 已提交
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>,
                   paddle::operators::CUDNNConvGradOpKernel<plat::float16>);
REGISTER_OP_KERNEL(
    conv2d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

1383 1384 1385 1386 1387 1388
REGISTER_OP_CUDA_KERNEL(
    depthwise_conv2d_grad_grad,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);

L
liym27 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvOpKernel<float>,
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
                   paddle::operators::CUDNNConvGradOpKernel<float>,
                   paddle::operators::CUDNNConvGradOpKernel<double>);
REGISTER_OP_KERNEL(
    conv3d_grad_grad, CUDNN, plat::CUDAPlace,
    paddle::operators::CUDNNConvDoubleGradOpKernel<float>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<double>,
    paddle::operators::CUDNNConvDoubleGradOpKernel<plat::float16>);
1401
#endif