gan_api.md 4.3 KB
Newer Older
Z
zchen0211 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
'''
GAN implementation, just a demo.
'''
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

X = pd.data(pd.float_vector(784))

# Conditional-GAN should be a class. 
### Class member function: the initializer.
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
    self.theta_D = [D_W1, D_b1, D_W2, D_b2]

    # define parameters of generators
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
    self.theta_G = [D_W1, D_b1, D_W2, D_b2]
    
    self.build_model()

### Class member function: Generator Net
def generator(self, z, y = None):

    # Generator Net
    if not self.y_dim:
      z = pd.concat(1, [z, y])
      
    G_h0 = pd.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.batch_norm(G_h0)
    G_h0_relu = pd.relu(G_h0_bn)
    
    G_h1 = pd.fc(G_h0_relu, self.G_w1, self.G_b1)
    G_h1_bn = pd.batch_norm(G_h1)
    G_h1_relu = pd.relu(G_h1_bn)
    
    G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.tanh(G_im)
    return G_im
    
### Class member function: Discriminator Net
def discriminator(self, image):

    # Discriminator Net
    D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
    D_h0_bn = pd.batchnorm(h0)
    D_h0_relu = pd.lrelu(h0_bn)
    
    D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
    D_h1_bn = pd.batchnorm(D_h1)
    D_h1_relu = pd.lrelu(D_h1_bn)
    
    D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
    return D_h2

### Class member function: Build the model
def build_model(self):

    # input data
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
    # if conditional GAN
    if self.y_dim:
      self.G = self.generator(self.z, self.y)
      self.D_t = self.discriminator(self.images)
      # generated fake images
      self.sampled = self.sampler(self.z, self.y)
      self.D_f = self.discriminator(self.images)
    else: # original version of GAN
      self.G = self.generator(self.z)
      self.D_t = self.discriminator(self.images)
      # generate fake images
      self.sampled = self.sampler(self.z)
      self.D_f = self.discriminator(self.images)
    
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))

# Main function for the demo:
if __name__ == "__main__":

    # dcgan
    dcgan = DCGAN()
    dcgan.build_model()

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
    d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.d_loss)
    g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(self.g_loss)

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
          sess.run(d_optim, 
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
          sess.run(g_optim,
                   feed_dict = {dcgan.z: batch_z})