math_kernel.cu 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/pten/kernels/math_kernel.h"

#include "paddle/pten/backends/gpu/gpu_context.h"
18
#include "paddle/pten/kernels/funcs/elementwise_functor.h"
19
#include "paddle/pten/kernels/gpu/reduce.h"
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include "paddle/pten/kernels/hybird/cuda/elementwise/elementwise.h"

#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

#include "paddle/fluid/platform/complex.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/pten/api/lib/utils/tensor_utils.h"
#include "paddle/pten/core/convert_utils.h"
#include "paddle/pten/core/kernel_registry.h"

namespace kps = paddle::operators::kernel_primitives;

namespace pten {

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
#define DEFINE_CUDA_ELEMENTWISE_OP(name)                             \
  template <typename T, typename Context>                            \
  void name##Kernel(const Context& dev_ctx,                          \
                    const DenseTensor& x,                            \
                    const DenseTensor& y,                            \
                    int axis,                                        \
                    DenseTensor* out) {                              \
    std::vector<const DenseTensor*> inputs;                          \
    std::vector<DenseTensor*> outputs;                               \
    inputs.emplace_back(&x);                                         \
    inputs.emplace_back(&y);                                         \
    outputs.emplace_back(out);                                       \
    out->mutable_data<T>();                                          \
    LaunchElementwiseCudaKernel<ElementwiseType::kBinary, T, T>(     \
        dev_ctx, inputs, &outputs, axis, funcs::name##Functor<T>()); \
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
  }

/**
 * Util Functors
 */

template <typename T>
struct DivideFunctor {
  HOSTDEVICE explicit inline DivideFunctor(int n)
      : n_inv(static_cast<T>(1.0 / n)) {}

  HOSTDEVICE inline T operator()(const T& x) const { return x * n_inv; }

 private:
  T n_inv;
};

/**
 * Kernels
 */

template <typename T, typename Context>
78 79 80 81 82 83
void MeanKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const std::vector<int64_t>& dims,
                bool keep_dim,
                bool reduce_all,
                DenseTensor* out) {
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  auto out_dtype = x.dtype();
  pten::Reduce<T, kps::AddFunctor, kps::DivideFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

// Create the definition of Add
DEFINE_CUDA_ELEMENTWISE_OP(Add)
// Create the definition of Subtract
DEFINE_CUDA_ELEMENTWISE_OP(Subtract)
// Create the definition of Multiply
DEFINE_CUDA_ELEMENTWISE_OP(Multiply)
// Create the definition of Divide
DEFINE_CUDA_ELEMENTWISE_OP(Divide)

template <typename T, typename Context>
99 100 101 102 103 104 105
void SumKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const std::vector<int64_t>& dims,
               bool keep_dim,
               bool reduce_all,
               DataType out_dtype,
               DenseTensor* out) {
106 107 108 109 110 111 112 113 114 115 116
  pten::Reduce<T, kps::AddFunctor, kps::IdentityFunctor>(
      dev_ctx, x, reduce_all, dims, keep_dim, out_dtype, out);
}

}  // namespace pten

using float16 = paddle::platform::float16;
using complex64 = ::paddle::platform::complex<float>;
using complex128 = ::paddle::platform::complex<double>;

PT_REGISTER_CTX_KERNEL(
117
    mean, GPU, ALL_LAYOUT, pten::MeanKernel, float, double, bool, float16) {}
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
PT_REGISTER_CTX_KERNEL(add,
                       GPU,
                       ALL_LAYOUT,
                       pten::AddKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       float16,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(subtract,
                       GPU,
                       ALL_LAYOUT,
                       pten::SubtractKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       float16,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(divide,
                       GPU,
                       ALL_LAYOUT,
                       pten::DivideKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       float16,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(multiply,
                       GPU,
                       ALL_LAYOUT,
                       pten::MultiplyKernel,
                       float,
                       double,
                       int,
                       int64_t,
                       bool,
                       float16,
                       complex64,
                       complex128) {}
PT_REGISTER_CTX_KERNEL(sum,
                       GPU,
                       ALL_LAYOUT,
166
                       pten::SumKernel,
167 168 169 170 171 172 173 174 175 176
                       bool,
                       float,
                       double,
                       float16,
                       int,
                       int64_t,
                       complex64,
                       complex128) {
  kernel->OutputAt(0).SetDataType(paddle::experimental::DataType::UNDEFINED);
}