parallel.py 9.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import warnings
18 19
from multiprocessing import Process  # noqa: F401
from multiprocessing import Manager  # noqa: F401
20 21
import time
import sys
22 23 24 25 26 27 28 29

from paddle import compat as cpt

# deprecated module import
from paddle.fluid import core
from paddle.fluid.framework import _set_expected_place
from paddle.fluid.dygraph import parallel_helper
from paddle.fluid.dygraph.parallel import ParallelEnv
30
from paddle.distributed.fleet.base.private_helper_function import wait_server_ready  # noqa: F401
31

32 33 34
__all__ = [  #noqa
    "init_parallel_env"
]
35 36 37

ParallelStrategy = core.ParallelStrategy

38 39 40 41 42 43 44 45 46 47 48
# NOTE(chenweihang): Maintain a global parallel env to avoid 
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

49

50
def _start_kv_server(port, http_server_d, size):
51
    from paddle.distributed.fleet.utils.http_server import KVServer
52
    http_server = KVServer(int(port), size=size)
53
    http_server.start()
54
    wait_seconds = 3
L
lilong12 已提交
55
    while http_server_d.get("running", False) or not http_server.should_stop():
56 57 58 59
        time.sleep(wait_seconds)
    http_server.stop()


60
def init_parallel_env():
61
    """
62
    Initialize parallel training environment in dynamic graph mode.
63

64
    .. note::
65
        Now initialize both `NCCL` and `GLOO` contexts for communication.
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

    Returns:
        None
        
    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
                    super(LinearNet, self).__init__()
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
                    
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
88
                # 1. initialize parallel environment
89 90
                dist.init_parallel_env()

91
                # 2. create data parallel layer & optimizer
92 93 94 95 96 97 98
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

99
                # 3. run layer
100 101 102 103 104 105 106 107 108 109 110 111 112 113
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
                
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
    """

114 115 116 117 118 119 120 121 122 123 124 125
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return

126 127
    # 1. gpu xpu check, must be gpu or xpu
    if not core.is_compiled_with_cuda() and not core.is_compiled_with_xpu():
128 129
        raise NotImplementedError(
            "Cannot initialize parallel environment in CPU-only version, now only "
130 131
            "supports initializing the GPU and XPU parallel environment. Please recompile "
            "or reinstall paddle with GPU or XPU support.")
132 133 134 135 136 137 138 139 140

    # 2. check env
    def _check_var_exists(var_name):
        var = os.environ.get(var_name, None)
        if var is None:
            raise ValueError("paddle.distributed initialize error, "
                             "environment variable %s is needed, but not set." %
                             var_name)

141 142 143 144 145
    if core.is_compiled_with_cuda():
        _check_var_exists("FLAGS_selected_gpus")
    elif core.is_compiled_with_xpu():
        _check_var_exists('FLAGS_selected_xpus')

146 147 148 149 150
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

151
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
    if init_gloo:
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        ep_rank = parallel_env.trainer_endpoints[parallel_env.rank].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size))
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
169 170

    # 4. init NCCL ParallelStrategy
171
    strategy = ParallelStrategy()
172 173
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
174 175 176 177
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
178
    strategy.nrings = parallel_env.nrings
179

180
    # NOTE(chenweihang): [ why config global place here? ]
181
    # the dygraph mode will be set to default mode,
182 183 184 185
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
186 187 188 189
    if core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
190 191
    _set_expected_place(place)

192 193 194 195 196 197 198
    # init nccl or bkcl context
    if core.is_compiled_with_cuda():
        parallel_helper._set_parallel_ctx(
            core.NCCLParallelContext(strategy, place))
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
            core.BKCLParallelContext(strategy, place))
199
    parallel_helper._init_parallel_ctx()
200

201 202 203 204
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
L
lilong12 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    if init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])

        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

def get_rank():
    """
    Returns the rank of current trainer.

    Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . 
    The default value is 0.

    Returns:
        (int) The rank of current trainer.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
244
    return _get_global_parallel_env().rank
245 246 247 248


def get_world_size():
    """
249
    Returns the number of trainers (number of processes participating in current job).
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266

    Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . 
    The default value is 1.

    Returns:
        (int) The number of trainers.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.distributed as dist

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            print("The world_size is %d" % dist.get_world_size())
            # The world_size is 4
    """
267
    return _get_global_parallel_env().world_size