api_base.py 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
        #     return_type : Tensor, vector<Tensor>, ..., the return type of api
        # args_str:
36 37
        #     args_declare : "str" // str of function params with default value. Example: (..., bool flag=false)
        #     args_define : "str" // str of function params without default value. Example: (..., bool flag)
38 39 40 41 42 43 44 45
        self.inputs, self.attrs, self.outputs, self.args_str = self.parse_args(
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
46 47 48 49 50
            self.infer_meta = self.parse_infer_meta(api_item_yaml['infer_meta'])
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.support_selected_rows_kernel = False if len(self.kernel[
                'func']) == 1 else True
            self.data_transform = self.parse_data_transform(api_item_yaml)
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

    def parse_args(self, api_name, api_item_yaml):
        inputs, attrs, args_str = self.parse_input_and_attr(
            api_name, api_item_yaml['args'])
        output_type_list, output_names, return_type = self.parse_output(
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
            'return_type': return_type
        }, args_str

    def parse_input_and_attr(self, api_name, args_config):
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
74 75 76 77 78 79 80 81 82
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
        attr_types_map = {'ScalarArray' : 'const ScalarArray&', 'Scalar' : 'const Scalar&', \
                      'int' : 'int', 'int32_t' : 'int32_t', 'int64_t' : 'int64_t',  'size_t' : 'size_t', \
                      'float' : 'float', 'double' : 'double', 'bool' : 'bool', \
                      'Backend' : 'Backend', 'DataLayout' : 'DataLayout', 'DataType' : 'DataType', \
                      'int64_t[]' : 'const std::vector<int64_t>&', 'int[]' : 'const std::vector<int>&'}
83 84 85 86 87
        args_declare_str = ""
        args_define_str = ""

        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
88
            type_and_name = item.split(' ')
89 90
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
91 92 93
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    args_declare_str = args_declare_str + in_type + ' ' + input_name + ', '
                    args_define_str = args_define_str + in_type + ' ' + input_name + ', '
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
109 110 111
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

                    default_value_str = "" if default_value is None else '=' + default_value
                    args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', '
                    args_define_str = args_define_str + attr_type + ' ' + attr_name + ', '
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

        return inputs, attrs, {
            'args_declare': args_declare_str[:-2],
            'args_define': args_define_str[:-2]
        }

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
134 135 136 137
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
138 139
            if re.search(r'\(\w*\)', output_item):
                result = re.search(
Z
zyfncg 已提交
140
                    r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*\((?P<name>\w+)\)",
141 142
                    output_item)
                out_type = result.group('out_type')
Z
zyfncg 已提交
143 144
                assert out_type in output_type_map, \
                    f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
145 146 147 148 149
                      but now is {out_type}."

                return out_type, result.group('name')

            else:
Z
zyfncg 已提交
150 151
                if output_item.strip() in output_type_map:
                    return output_type_map[output_item.strip()], 'out'
152 153
                else:
                    raise ValueError(
Z
zyfncg 已提交
154 155
                        "{} : Output type error: the output type only support Tensor and Tensor[], \
                      but now is {}.".format(api_name, output_item.strip()))
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
            out_type, out_name = parse_output_item(temp_list[0])
            return [out_type], [out_name], self.get_return_type([out_type])
        else:
            out_type_list = []
            out_name_list = []
            for output_item in temp_list:
                out_type, out_name = parse_output_item(output_item)
                out_type_list.append(out_type)
                out_name_list.append(out_name)

            return out_type_list, out_name_list, self.get_return_type(
                out_type_list)

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
            'data_type': None
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
        kernel['func'] = [
            kernel_fn.strip() for kernel_fn in kernel_config['func'].split(',')
        ]

        if len(kernel['func']) == 2:
            assert kernel['func'][0] == self.api, \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of first func should be same with api name({self.api}), \
                      but now is {kernel['func'][0]}."
            assert kernel['func'][1].endswith('_sr'), \
                    f"{self.api} : Kernel func error: If kernel has two func config, the name of second func should be a selected_rows kernel (the func name endwith '_sr'), \
                      but now is {kernel['func'][1]}."

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    # Override by child class
    def get_return_type(self, out_type_list):
        return None

    def gene_api_declaration(self):
        api_declaration = f"""
PADDLE_API {self.outputs['return_type']} {self.api}({self.args_str['args_declare']});
"""

        return api_declaration

    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
            if attrs['attr_info'][attr_name][0] == 'Backend':
                assert kernel['backend'] is not None, \
                    f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually."
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
        kernel_select_code = ""
        if kernel['backend'] is not None:
            if '>' in kernel['backend']:
                vars_list = kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
                assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \
                    f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type."
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                args_str = ""
                for ele in kernel['backend'].split(','):
                    args_str = args_str + ele.strip() + ', '
                kernel_select_code = kernel_select_code + f"""
  kernel_backend = ParseBackend({args_str[:-2]});
"""

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
            assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \
                f"{api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'."

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
346 347
            if self.support_selected_rows_kernel:
                kernel_select_code = kernel_select_code + f"""
348
  KernelType kernel_type = ParseKernelTypeByInputArgs({", ".join(input_names)});
349 350
"""

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
    auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

370
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
371 372 373 374 375 376 377 378 379 380 381 382 383 384
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

        infer_meta_params = infer_meta[
            'param'] + kernel_output_names if infer_meta[
                'param'] is not None else input_names + attr_names + kernel_output_names
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
                param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
            elif param in kernel_output_names:
385 386
                meta_tensor_code = meta_tensor_code + code_indent + "  pten::MetaTensor " + param.replace(
                    'kernel_', PREFIX_META_TENSOR_NAME) + "(" + param + ");\n"
387
                param_code = param_code + "&" + param.replace(
388
                    'kernel_', PREFIX_META_TENSOR_NAME) + ", "
389 390 391 392 393 394 395 396 397 398 399
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
400
{code_indent}  pten::{infer_meta['func']}({param_code});
401 402
"""

403
    def get_kernel_args(self, code_indent):
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
        input_trans_map = {
            'const Tensor&': 'const pten::DenseTensor&',
            'const Tensor &': 'const pten::DenseTensor&',
            'const std::vector<Tensor>&':
            'const std::vector<pten::DenseTensor>&',
            'const std::vector<Tensor> &':
            'const std::vector<pten::DenseTensor>&'
        }
        out_trans_map = {
            'Tensor': 'pten::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<pten::DenseTensor*>&'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                trans_flag = "{}"
                if input_name in self.data_transform['skip_transform']:
                    trans_flag = "{true}"
                elif input_name in self.data_transform['support_trans_dtype']:
                    trans_flag = "{false, true}"
                input_tensor_code = input_tensor_code + f"""
435
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
436 437 438

            else:
                input_tensor_code = input_tensor_code + f"""
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});"""

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
                kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_args_type_list.append(input_trans_map[input_infos[
                    param]])
            elif param in attr_names:
                # set attr for kernel_context
                if 'ScalarArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const pten::ScalarArray&')
                    param = 'pten::ScalarArray(' + param + ')'
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const pten::Scalar&')
                    param = 'pten::Scalar(' + param + ')'
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    def get_selected_rows_kernel_args(self, code_indent):
        input_trans_map = {
            'const Tensor&': 'const pten::SelectedRows&',
            'const Tensor &': 'const pten::SelectedRows&'
        }
        out_trans_map = {'Tensor': 'pten::SelectedRows*'}
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        input_tensor_code = ""
        for input_name in input_names:
            # set input code
            input_tensor_code = input_tensor_code + f"""
      auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""

        attr_names = self.attrs['names']

        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

        kernel_args = "*dev_ctx, "
        for param in kernel_param:
            if param in input_names:
                kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", "
                kernel_args_type_list.append(input_trans_map[input_infos[
                    param]])
            elif param in attr_names:
                # set attr for kernel_context
                if 'ScalarArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const pten::ScalarArray&')
                    param = 'pten::ScalarArray(' + param + ')'
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const pten::Scalar&')
                    param = 'pten::Scalar(' + param + ')'
                else:
                    kernel_args_type_list.append(self.attrs['attr_info'][param][
                        0])
                kernel_args = kernel_args + param + ", "
            elif isinstance(param, bool):
                kernel_args = kernel_args + str(param).lower() + ", "
            else:
                kernel_args = kernel_args + str(param) + ", "

        for out_type in self.outputs['types']:
            kernel_args_type_list.append(out_trans_map[out_type])

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

        return input_tensor_code, kernel_args[:-2], kernel_signature

    # Override by child class
530
    def gene_output(self, output_type_list, set_out_func, code_indent):
531 532
        return None, None, None

533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    def gen_dense_tensor_kernel_code(self, code_indent):
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
            self.outputs['types'], 'SetKernelOutput', code_indent)
        return f"""
{code_indent}  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
{code_indent}      "{self.kernel['func'][0]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
{code_indent}  (*kernel_fn)({kernel_args}, {outputs_args});

{code_indent}  return out;"""

    def gen_selected_rows_kernel_code(self, code_indent):
        input_tensors, kernel_args, kernel_signature = self.get_selected_rows_kernel_args(
            code_indent)
        outputs_args, kernel_output_names, output_create = self.gene_output(
            self.outputs['types'], 'SetSelectedRowsKernelOutput', code_indent)
        return f"""
{code_indent}  auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError(
{code_indent}      "{self.kernel['func'][1]}", {{kernel_backend, kernel_layout, kernel_data_type}});
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
{code_indent}  VLOG(6) << "{self.api} API SelectedRows kernel: " << kernel;

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
{code_indent}  (*kernel_fn)({kernel_args}, {outputs_args});

{code_indent}  return out;"""

577 578
    def gene_api_code(self):
        if self.is_base_api:
579
            api_code = f"""
580 581
PADDLE_API {self.outputs['return_type']} {self.api}({self.args_str["args_define"]}) {{
{self.gene_kernel_select()}
582
"""
583

584 585 586 587 588 589 590 591
            if self.support_selected_rows_kernel:
                code_indent = '  '
                api_code = api_code + f"""
  if(kernel_type == KernelType::DENSE_TENSOR_KENREL){{
{self.gen_dense_tensor_kernel_code(code_indent)}
  }} else {{
{self.gen_selected_rows_kernel_code(code_indent)}      
  }}
592
}}
593 594 595 596 597 598 599 600
"""

                return api_code
            else:
                code_indent = ''
                return api_code + self.gen_dense_tensor_kernel_code(
                    code_indent) + """
}
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
"""

        else:
            inveke_func_name = self.invoke.split('(')[0].strip()
            if inveke_func_name in self.attrs['names']:
                # Adjust the param whose name is same with api invoked.
                pattern = r'\W' + inveke_func_name + '[^A-Za-z0-9_(]'

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
                                     self.args_str["args_define"])
            else:
                invoke_code = self.invoke
                params_code = self.args_str["args_define"]
            return f"""
{self.outputs['return_type']} {self.api}({params_code}) {{
  return {invoke_code};
}}
"""