pybind.cc 39.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

P
peizhilin 已提交
24 25 26 27 28 29 30
#if defined(_WIN32)
#define NOMINMAX
#define GLOG_NO_ABBREVIATED_SEVERITIES  // msvc conflict logging with windows.h
#define GOOGLE_GLOG_DLL_DECL
#include <Windows.h>
#endif

Y
Yi Wang 已提交
31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
34
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
35 36 37
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
38
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
39
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
40
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
41
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
43
#include "paddle/fluid/framework/version.h"
Y
Refine  
Yu Yang 已提交
44
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
45
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
46
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/platform/enforce.h"
48
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
49 50 51 52
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
53 54
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
55
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
56
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
57

58
#include "paddle/fluid/string/to_string.h"
59

D
Dong Zhihong 已提交
60
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
61
#ifndef _WIN32
Y
Yi Wang 已提交
62
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
63
#endif
Y
Yi Wang 已提交
64 65
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
66 67
#endif

M
minqiyang 已提交
68 69
#include "pybind11/stl.h"

70 71 72 73
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
74 75 76
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

77
namespace paddle {
78
namespace pybind {
79
bool IsCompiledWithCUDA() {
80
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
81 82 83 84 85 86
  return false;
#else
  return true;
#endif
}

Y
update  
Yancey1989 已提交
87
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
88
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
89 90 91 92 93 94
  return true;
#else
  return false;
#endif
}

95
PYBIND11_PLUGIN(core) {
Y
Refine  
Yu Yang 已提交
96
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
97
  py::module m("core", "C++ core of PaddlePaddle");
98

99 100 101 102
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

103
  BindException(&m);
Y
Yu Yang 已提交
104

105 106 107
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
108
      .def("_get_dims",
109
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
110
      .def("_set_dims",
Q
qijun 已提交
111
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
112
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
113
           })
Y
yuyang18 已提交
114
      .def("_set_layout",
D
dzhwinter 已提交
115 116 117
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
118
      .def("_alloc_float",
D
dzhwinter 已提交
119
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
120
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
121
           })
Y
yuyang18 已提交
122
      .def("_alloc_float",
Y
Yu Yang 已提交
123
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
124
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
125
           })
Y
yuyang18 已提交
126
      .def("_alloc_int",
Y
Yu Yang 已提交
127
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
128
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
129
           })
Y
yuyang18 已提交
130
      .def("_alloc_int",
D
dzhwinter 已提交
131
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
132
             self.mutable_data<int>(place);
Q
qijun 已提交
133
           })
Y
yuyang18 已提交
134
      .def("_alloc_int",
C
chengduoZH 已提交
135 136 137
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
138
      .def("_alloc_float",
C
chengduoZH 已提交
139 140 141
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
142 143
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
144
      .def("set", PyCPUTensorSetFromArray<double>)
145
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
146
      .def("set", PyCPUTensorSetFromArray<bool>)
147
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
148
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
149
      .def("set", PyCPUTensorSetFromArray<int8_t>)
150
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
151 152
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
153
      .def("set", PyCUDATensorSetFromArray<double>)
154
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
155
      .def("set", PyCUDATensorSetFromArray<bool>)
156
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
157
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
158
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
159 160 161 162 163 164
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
165
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
166
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
167
#endif
168
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
169 170 171 172 173
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
      .def("_dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
174

X
Xin Pan 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
188
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
189
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
190
     columns, hence [5, 2].
X
Xin Pan 已提交
191 192 193

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
194 195
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
219 220
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
221 222 223 224 225 226 227 228 229 230 231 232 233 234
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
235
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
236 237 238 239 240
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
241
      .def("set_lod",
242
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
243
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
244
             LoD new_lod;
245 246
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
247 248
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
249
             self.set_lod(new_lod);
D
dangqingqing 已提交
250
           })
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
276
      // Set above comments of set_lod.
277 278 279 280 281 282 283 284 285 286 287 288 289
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
290 291
      });

Q
qijun 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
305 306 307 308 309 310 311 312 313
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
314
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
315
      .def("rows", [](SelectedRows &self) {
316 317 318 319 320
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
321
      });
Q
qijun 已提交
322

323
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
324 325 326

All parameter, weight, gradient are variables in Paddle.
)DOC")
327
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
328
      .def("set_int",
329 330
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
331 332 333 334 335 336 337
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
338
      .def("get_tensor",
339 340
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
341 342
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
343 344 345
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
346 347 348 349 350
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
351 352 353
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
354
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
P
peizhilin 已提交
355
      .def("get_communicator",
D
Dong Zhihong 已提交
356 357 358 359
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
P
peizhilin 已提交
360
#endif
Y
Refine  
Yu Yang 已提交
361 362 363 364 365
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
P
peizhilin 已提交
366
           py::return_value_policy::reference);
367

Y
Refine  
Yu Yang 已提交
368
  py::class_<framework::ReaderHolder>(m, "Reader", "")
369
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
370

S
sneaxiy 已提交
371 372 373 374
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
375 376
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
377
      .def("push",
S
sneaxiy 已提交
378
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
379
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
380
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
381
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
382
           })
S
sneaxiy 已提交
383 384 385 386
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
387

S
sneaxiy 已提交
388
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
389
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
390
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
391
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
392 393 394 395 396 397
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
398 399
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
400
              return holder->GetQueue();
S
sneaxiy 已提交
401
            },
S
sneaxiy 已提交
402
        py::return_value_policy::copy);
S
sneaxiy 已提交
403

404
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
405
      .def("var",
406
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
407
             return self.Var(name);
Y
Yu Yang 已提交
408
           },
409
           py::return_value_policy::reference)
410
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
411
      .def(py::init<>())
412
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
413
           py::return_value_policy::reference)
Y
Yu Yang 已提交
414
      .def("drop_kids", &Scope::DropKids);
415

Y
Yu Yang 已提交
416 417
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
418 419
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
420 421 422 423 424 425 426 427 428 429
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
430 431
    return ret_values;
  });
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
448
  m.def("prune", [](const ProgramDesc &origin,
449
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
450
    ProgramDesc prog_with_targets(origin);
451
    for (const auto &t : targets) {
452
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
453
    }
454
    proto::ProgramDesc pruned_desc;
455
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
456
    return new ProgramDesc(pruned_desc);
457
  });
458 459 460 461
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
462 463 464
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
465 466
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
467
  // clang-format off
Y
Yu Yang 已提交
468
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
469 470
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
471
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
472 473 474
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
475
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
476
                      -> paddle::platform::DeviceContext* {
477
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
478
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
479
#else
Q
qijun 已提交
480
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
481
#endif
C
chengduoZH 已提交
482 483 484 485 486 487 488 489 490 491 492
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
493
// clang-format on
P
peizhilin 已提交
494
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
495 496
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
497
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
498
      .def(py::init<int>())
D
dzhwinter 已提交
499
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
500

501 502 503
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
504

C
chengduoZH 已提交
505 506 507 508
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
509 510 511 512 513 514 515
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
516
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
517
             self = gpu_place;
C
chengduoZH 已提交
518 519
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
520 521
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
522
      });
Y
Yu Yang 已提交
523

Y
Yu Yang 已提交
524 525 526
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
527
                    proto::OpDesc desc;
Y
Yu Yang 已提交
528 529 530 531 532
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
533
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
534
                  })
535
      .def("run",
536
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
537 538 539
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
540
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
541 542 543 544 545
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
546 547 548 549 550 551 552
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
553 554
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
555
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
556
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
557 558 559 560
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
561

F
fengjiayi 已提交
562
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
563
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
564
      .def("close", &Executor::Close)
S
sneaxiy 已提交
565 566 567 568 569
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
570

D
dzhwinter 已提交
571
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
572
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
573 574
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
575

576
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
Y
update  
Yancey1989 已提交
577
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
578 579 580 581 582 583
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
584

585
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
586
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
587

X
Xin Pan 已提交
588 589
  m.def("_is_program_version_supported", IsProgramVersionSupported);

590 591 592 593 594
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
595

Y
Yu Yang 已提交
596 597 598 599 600 601 602 603 604
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
605
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
606 607
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
624 625 626
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
627
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
628
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
629
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
630

P
peizhilin 已提交
631
#ifndef _WIN32
D
dangqingqing 已提交
632 633 634
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
635
#endif
P
peizhilin 已提交
636
#endif
Y
Yu Yang 已提交
637

638 639 640 641
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
642
      .value("kAll", platform::ProfilerState::kAll)
643 644 645 646 647 648 649 650 651 652 653 654 655
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
656
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
657
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
658

659 660
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
661 662 663 664 665
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
666 667 668
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
669

X
fix  
Xin Pan 已提交
670 671
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
672 673 674 675 676 677 678 679 680 681 682 683 684 685
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
686
  // -- python binds for parallel executor.
Y
yuyang18 已提交
687
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
688 689 690 691
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
692 693 694 695 696 697 698 699 700 701 702
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
703 704 705

        )DOC");

Y
yuyang18 已提交
706
  exec_strategy.def(py::init())
Y
yuyang18 已提交
707 708 709 710 711
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
712 713 714 715 716 717 718 719 720 721
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
722
      .def_property(
723 724 725 726
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
727 728 729 730
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
731 732 733 734 735
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
736 737 738 739
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
740 741 742 743 744 745 746
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
747 748 749 750 751 752 753 754 755 756 757
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
758 759 760 761 762 763
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
764

Y
yuyang18 已提交
765
  exec_strategy.def_property(
Y
yuyang18 已提交
766 767 768 769 770 771 772
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
773 774
      });

C
chengduo 已提交
775 776 777 778
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
779 780 781 782 783 784 785 786 787 788 789
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
790
)DOC");
Y
yuyang18 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
807
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
808
            self.reduce_ = strategy;
C
chengduo 已提交
809 810 811 812 813 814 815
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
816 817 818 819 820
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
821
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
822
            self.gradient_scale_ = strategy;
C
chengduo 已提交
823 824 825 826 827 828
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
829 830 831 832
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
833
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
834
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
835 836 837 838
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
839 840 841
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
842
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
843
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
844 845
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
846 847 848 849 850 851
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
852
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
853 854 855 856 857 858 859 860 861
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
862
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
863 864 865
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
C
chengduo 已提交
866 867 868 869 870 871
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
872
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
873 874 875 876 877
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
878
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
879
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
880 881 882 883 884
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
885 886 887 888

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
889
                  const std::string &, Scope *, std::vector<Scope *> &,
890 891
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
892 893 894 895
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
896 897 898 899 900
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
901 902 903 904
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
905 906 907 908 909 910
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
911

912
  BindRecordIOWriter(&m);
913
  return m.ptr();
L
Luo Tao 已提交
914
}
915
}  // namespace pybind
916
}  // namespace paddle