cost_model.py 27.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import json
import queue
import copy
from enum import Enum
import paddle

SUCC = 0  # successor
PRED = 1  # predecessor


class CostNodeType(Enum):
    DEFAULT = 0
    COMPUTATION = 1
    COMMUNICATION = 2
    VARIABLE = 3
    MERGED = 4
    NOP = 5


class Cost(object):
    def __init__(self):
        self.runtime = None
        self.static_mem = None
        self.peak_mem = None


class CostModelMode(Enum):
    DEFAULT = 0
    BENCHMARKING = 1  # costs based on trial runs
    ANALYSIS = 2  # costs based on analysis
    MIXED = 3


class CostNode(object):
    def __init__(self, node, node_type, id=None):
        self.id = id
        self.node = node
        self.type = node_type
        self._cost = 0
        self.is_optim = False
        self.is_bwd = False

    @property
    def cost(self):
        return self._cost

    @cost.setter
    def cost(self, cost):
        if cost < 0:
            raise ValueError('Cost must be above 0.')
        self._cost = cost


class MergedOpsCostNode(CostNode):
    def __init__(self, node_type, id=None, base_node_list=None, is_bwd=False):
        super(MergedOpsCostNode, self).__init__(None, node_type, id)
        self.node_list = base_node_list
        self.is_bwd = is_bwd


class CommOpCostNode(CostNode):
    def __init__(self,
                 node,
                 node_type,
                 id=None,
                 comm_node_list=None,
                 is_bwd=False):
        super(CommOpCostNode, self).__init__(node, node_type, id)
        self.node_list = comm_node_list
        self.ranks = []
        self.comm_type = node.type
        self.is_bwd = is_bwd

    def set_ranks(self, ranks):
        self.ranks = ranks

    def set_shapes(self, input_shape, output_shape):
        self.input_shape = input_shape
        self.output_shape = output_shape

    def init_comm_cost(self, cluster=None):
        # ref: https://github.com/NVIDIA/nccl-tests/blob/master/doc/PERFORMANCE.md
        # should get from `cluster`
        BANDWIDTH = 32 * 1024 / 1000  # MB/ms, V100 PCIe
        num_ranks = len(self.ranks)
        comm_volumn = np.prod(self.input_shape) * 4

        if 'allreduce' in self.comm_type:
            self._cost = comm_volumn / (BANDWIDTH * num_ranks /
                                        (2 * (num_ranks - 1)))
        elif 'gather' in self.comm_type:
            self._cost = comm_volumn / (BANDWIDTH * num_ranks / (num_ranks - 1))
        elif 'broadcast' in self.comm_type:
            self._cost = comm_volumn / BANDWIDTH
        elif 'send' in self.comm_type or 'recv' in self.comm_type:
            self._cost = comm_volumn / BANDWIDTH
        else:
            self._cost = 0


class TensorCostNode(CostNode):
    def __init__(self,
                 node,
                 node_type,
                 id=None,
                 base_node_list=None,
                 batch_size=None,
                 shared_node_id=None):
        super(TensorCostNode, self).__init__(node, node_type, id)
        self.shape = node.shape
        self.dtype = node.dtype
        self.dtype_factor = 1
        self.persistable = None
        self.shared_node_id = shared_node_id
        if self.dtype == paddle.float32 or node.dtype == paddle.int32:
            self.dtype_factor *= 4
        elif node.dtype == paddle.int64:
            self.dtype_factor *= 8
        else:
134
            raise NotImplementedError("{} not counted".format(node.dtype))
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

        self.batch_size = None
        if batch_size is not None:
            self.batch_size = batch_size

    def get_size(self):
        p = 1
        for i in self.node.shape:
            if i == -1:  # deal with placeholder
                assert self.batch_size is not None, "Batch size not decided."
                i = self.batch_size
            p *= i
        return p


class CompOpCostNode(CostNode):
    def __init__(self, node, node_type, id=None, is_bwd=False, is_optim=False):
        super(CompOpCostNode, self).__init__(node, node_type, id)
        self.is_bwd = is_bwd
        self.is_optim = is_optim

    def init_comp_cost(self, cost_data):
        # TODO: improve fluid.CostModel for more specific cost_data
        op_name = self.node.type
        if op_name in cost_data.keys():
            self.cost = cost_data[op_name]
        else:
            self.cost = 0.0


class PipeEvent(object):
    def __init__(self, stage_id, event_name, duration, start_time=-1):
        self.stage_id = stage_id
        self.name = event_name
        self.duration = duration
        self.s_time = start_time
        self.e_time = -1


class CostModel(object):
    def __init__(self,
                 mode=CostModelMode.BENCHMARKING,
                 cluster=None,
                 batch_size=1,
                 microbatch_num=1,
                 opcall_overhead=0,
                 standalone_cost_data=None,
                 pipeline_config=None):
        self.mode = mode

        # parameters
        self.opcall_overhead = opcall_overhead
        self.batch_size = batch_size
        self.microbatch_num = microbatch_num

        self.nodes = {}  # name -> node

        self.origin_graph = {}  # original graph
        self.op_graph = {}  # op graph (no variables nodes)
        self.runtime_graph = {}  # runtime graph, for simulation

        self.cluster = cluster
        self.cost_data = standalone_cost_data
        self.pp2rank = pipeline_config
        if self.pp2rank is not None:
            self.rank2pp = {}
            for stage_idx, ranks in enumerate(self.pp2rank):
                for rank in ranks:
                    self.rank2pp[rank] = stage_idx
        else:
            self.rank2pp = None

        self.ring2rank = {}

        self.fwd_time = []
        self.bwd_time = []
        self.optim_time = []

    def _parse_sub_program(self, program, nodes, graph, cost_data, sub_idx):
        assert len(
            program.blocks) == 1, "Program more than 1 block not supported."
        block = program.blocks[0]

        for var in block.vars.values():
            var_id = var.name
            nodes[var_id] = TensorCostNode(var, CostNodeType.VARIABLE, var_id)
            graph[var_id] = [[], []]

        for op in block.ops:
            op_id = op.type + "_" + str(op.idx)
            if op.type.startswith('c_') or op.type.startswith(
                    'send') or op.type.startswith('recv'):
                is_bwd = False
                if op.type.startswith('c_'):
                    ring_id = op.attr('ring_id')
                    if ring_id not in self.ring2rank:
                        self.ring2rank[ring_id] = set()
                    self.ring2rank[ring_id].add(sub_idx)
                    is_bwd = '@GRAD' in op.output('Out')[0]
                elif op.type.startswith('recv'):
                    is_bwd = '@GRAD' in op.output('Out')[0]
                elif op.type.startswith('send'):
                    is_bwd = '@GRAD' in op.input('X')[0]
                op_node = CommOpCostNode(op, CostNodeType.COMMUNICATION, op_id,
                                         is_bwd)
            else:
                is_bwd = '_grad' in op.type
                is_optim = 'LearningRate' in op.input_names
                op_node = CompOpCostNode(op, CostNodeType.COMPUTATION, op_id,
                                         is_bwd, is_optim)
                op_node.init_comp_cost(cost_data)

            nodes[op_id] = op_node
            graph[op_id] = [[], []]

            comm_input_shape = [0]
            comm_output_shape = [0]
            for i in range(len(op.input_names)):
                try:
                    var_id = op.input(op.input_names[i])[0]
                    var_node = nodes[var_id]
                    graph[op_id][PRED].append(var_node.id)
                    graph[var_id][SUCC].append(op_node.id)
                    comm_input_shape = var_node.shape
                except:
                    continue
            for i in range(len(op.output_names)):
                try:
                    var_id = op.output(op.output_names[i])[0]
                    var_node = nodes[var_id]
                    graph[op_id][SUCC].append(var_node.id)
                    graph[var_id][PRED].append(op_node.id)
                    comm_output_shape = var_node.shape
                except:
                    continue
            if op_node.type == CostNodeType.COMMUNICATION:
                op_node.set_shapes(comm_input_shape, comm_output_shape)

        # resolve hazard: rename the r/w hazard variable nodes to ensure self.origin_graph is a DAG
        new_var_dict = {}
        for node_id, node in nodes.items():
            if node.type == CostNodeType.VARIABLE and node.node.persistable:
                write_op_cnt = 0
                for pred_id in graph[node_id][PRED]:
                    pred = nodes[pred_id]
                    if pred.type == CostNodeType.COMPUTATION and (
                            pred_id in graph[node_id][SUCC]):

                        graph[pred_id][SUCC].remove(node_id)
                        graph[node_id][PRED].remove(pred_id)

                        write_op_cnt += 1
                        new_var_id = node_id + '_write_{}'.format(write_op_cnt)
                        new_var = TensorCostNode(
                            node.node,
                            CostNodeType.VARIABLE,
                            new_var_id,
                            shared_node_id=node_id)

                        graph[new_var_id] = [[], []]
                        graph[pred_id][SUCC].append(new_var_id)
                        graph[new_var_id][PRED].append(pred_id)

                        new_var_dict[new_var_id] = new_var
        for k, v in new_var_dict.items():
            nodes[k] = v
        return nodes

    def parse_program(self, distributed_program):
        self.distributed_program = distributed_program
        self.total_rank = len(self.distributed_program)
        sub_prog_cnt = len(distributed_program)
        self.nodes = [] * sub_prog_cnt
        self.origin_graph = [] * sub_prog_cnt  # original graph
        self.op_graph = [] * sub_prog_cnt  # op graph (no variables nodes)
        self.runtime_graph = [] * sub_prog_cnt  # runtime graph, for simulation

        for sub_idx, sub_prog in enumerate(distributed_program):
            self.nodes.append({})
            self.origin_graph.append({})
            self.op_graph.append({})
            self.runtime_graph.append({})
            self._parse_sub_program(
                sub_prog, self.nodes[sub_idx], self.origin_graph[sub_idx],
                self.cost_data[0 if self.rank2pp is None else self.rank2pp[
                    sub_idx]], sub_idx)
        return self.nodes

    def _find_succ_op(self, node_id, sub_idx=0):
        succ_ops_id = []
        for succ_id in self.origin_graph[sub_idx][node_id][SUCC]:
            succ = self.nodes[sub_idx][succ_id]
            if succ.type == CostNodeType.COMMUNICATION or \
                succ.type == CostNodeType.COMPUTATION:
                succ_ops_id.append(succ_id)
            elif succ.type == CostNodeType.VARIABLE:
                succ_ops_id = succ_ops_id + self._find_succ_op(succ_id, sub_idx)
            else:
                raise NotImplementedError(
                    'This type of node not supported yet:{}'.format(succ.type))
        return succ_ops_id

    def build_op_graph(self):
        for sub_idx in range(self.total_rank):
            op_nodes_id = []
            for node_id, node in self.nodes[sub_idx].items():
                if node.type == CostNodeType.VARIABLE:
                    continue
                self.op_graph[sub_idx][node_id] = [[], []]
                op_nodes_id.append(node_id)
            for op_id in op_nodes_id:
                succ_nodes_id = self._find_succ_op(op_id, sub_idx)

                self.op_graph[sub_idx][op_id][SUCC] = succ_nodes_id
                for succ_id in succ_nodes_id:
                    self.op_graph[sub_idx][succ_id][PRED].append(op_id)

    def build_runtime_graph(self):
        self.runtime_graph = copy.deepcopy(self.op_graph)

    def eliminate_multi_edges(self, graph=None):
        for node_id, edges in graph.items():
            graph[node_id][PRED] = list(set(edges[PRED]))
            graph[node_id][SUCC] = list(set(edges[SUCC]))

    def merge_comm(self):
        for sub_idx in range(self.total_rank):
            for node_id, edges in self.op_graph[sub_idx].items():
                node = self.nodes[sub_idx][node_id]
                if node_id.startswith('c_'):
                    ring_id = node.node.attr('ring_id')
                    node.set_ranks(list(self.ring2rank[ring_id]))
                    node.init_comm_cost(self.cluster)
                elif node_id.startswith('send') or node_id.startswith('recv'):
                    peer_rank = node.node.attr('peer')
                    node.set_ranks([sub_idx, peer_rank])
                    node.init_comm_cost(self.cluster)
                else:
                    pass  # Not communication op

    def _merge_node(self, to_merge_node_list, merge_type='linear', nodes=None):
        nodes_list = []
        node_cost = 0
        for node in to_merge_node_list:
            if isinstance(node, MergedOpsCostNode):
                nodes_list += node.node_list
            else:
                nodes_list.append(node.id)
            if merge_type == 'linear':
                node_cost += node.cost
            elif merge_type == 'branch':
                node_cost = max(node_cost, node.cost)
            else:
                raise NotImplementedError(
                    'This type of merging is not supported:{}'.format(
                        merge_type))
        merged_node_id = 'merged_' + str(len(nodes))
        is_bwd = to_merge_node_list[0].is_bwd
        merged_node = MergedOpsCostNode(
            CostNodeType.MERGED,
            id=merged_node_id,
            base_node_list=nodes_list,
            is_bwd=is_bwd)
        merged_node.cost = node_cost
        return merged_node_id, merged_node

    def merge_linear(self):
        '''
        This method does the following: 
        If X depends on Y only, they must be run sequentially.
            [ e.g. A ->- C ->- D   D and E depends on C only.] 
            [      B ->-/ \->- E   C depends on A and B.     ]
        We merge X and Y into a new node and sum up their cost time.
        '''
        cnt = 0
        for sub_idx in range(self.total_rank):
            cnt += self._merge_linear(
                self.nodes[sub_idx], self.runtime_graph[sub_idx], is_bwd=False)
            cnt += self._merge_linear(
                self.nodes[sub_idx], self.runtime_graph[sub_idx], is_bwd=True)
        return cnt

    def merge_branch(self):
        '''
        This method does the following:
        If a node has more than one successor, there is *branch*.
            [ e.g. A ->- B ->- D                                       ] 
            [       \->- C ->- / , B and C can be run at the same time ]
            case 1: if B or C is null (or D is directly dependent on A),
                    it's equivalent to A->C->D or A->B->D, fall back to self.merge_linear
            case 2: if both B and C are some op,
                    merged_cost = max(cost(B), cost(C))
        '''
        cnt = 0
        for sub_idx in range(self.total_rank):
            cnt += self._merge_branch(
                self.nodes[sub_idx], self.runtime_graph[sub_idx], is_bwd=False)
            cnt += self._merge_branch(
                self.nodes[sub_idx], self.runtime_graph[sub_idx], is_bwd=True)
        return cnt

    def _merge_linear(self, nodes, runtime_graph, is_bwd=False):
        reduct_cnt = 0
        rt_nodes_id = list(runtime_graph.keys())
        for node_id in rt_nodes_id:
            if node_id not in runtime_graph.keys():
                continue
            node = nodes[node_id]
            if not is_bwd == node.is_bwd or node.is_optim:
                continue
            edges = runtime_graph[node_id]
            ind = len(edges[PRED])  # in_degree
            if ind == 1:  # only depend on one node
                pred_id = edges[PRED][0]
                pred = nodes[pred_id]
                merged_node_id, merged_node = self._merge_node(
                    [node, pred], merge_type='linear', nodes=nodes)
                nodes[merged_node_id] = merged_node
                runtime_graph[merged_node_id] = [[], []]

                # delete edges and add new edges
                succ = None
                runtime_graph[merged_node_id][SUCC] = copy.deepcopy(edges[SUCC])
                if len(runtime_graph[pred_id][SUCC]) > 1:
                    # predecessor has more than 1 successor
                    # the merged_node is to inherit the rest of its successors
                    succ = runtime_graph[pred_id][SUCC]
                    succ.remove(node_id)
                    runtime_graph[merged_node_id][SUCC] += succ
                runtime_graph[merged_node_id][PRED] = runtime_graph[pred_id][
                    PRED]
                for i in runtime_graph[pred_id][PRED]:
                    runtime_graph[i][SUCC].remove(pred_id)
                    runtime_graph[i][SUCC].append(merged_node_id)

                for i in edges[SUCC]:
                    runtime_graph[i][PRED].remove(node_id)
                    runtime_graph[i][PRED].append(merged_node_id)
                if succ is not None:
                    for i in succ:
                        runtime_graph[i][PRED].remove(pred_id)
                        runtime_graph[i][PRED].append(merged_node_id)

                runtime_graph.pop(node_id)
                runtime_graph.pop(pred_id)
                reduct_cnt += 1
        self.eliminate_multi_edges(runtime_graph)
        return reduct_cnt  # the number of nodes that have been reduced

    def _merge_branch(self, nodes, runtime_graph, is_bwd=False):
        reduct_cnt = 0
        rt_nodes_id = list(runtime_graph.keys())
        for node_id in rt_nodes_id:
            node = nodes[node_id]
            if not is_bwd == node.is_bwd or node.is_optim:
                continue
            edges = runtime_graph[node_id]
            outd = len(edges[SUCC])  # out_degree
            if outd > 1:  # branch out
                succ_nodes_id = edges[SUCC]

                succ_to_elim = []
                for succ_id in succ_nodes_id:
                    for succ_2_id in succ_nodes_id:
                        tmp = runtime_graph[succ_2_id][SUCC]
                        if succ_id in tmp:
                            succ_to_elim.append(succ_id)
                            break
                for id in succ_to_elim:
                    edges[SUCC].remove(id)
                    runtime_graph[id][PRED].remove(node_id)
                    reduct_cnt += 1

                to_merge = True
                if len(edges[SUCC]) < 1 or len(runtime_graph[edges[SUCC][0]][
                        SUCC]) < 1:
                    continue
                end_node_id = runtime_graph[edges[SUCC][0]][SUCC][0]
                for i in succ_nodes_id:
                    if len(runtime_graph[i][SUCC]) != 1 or \
                        runtime_graph[i][SUCC][0] != end_node_id:
                        to_merge = False  # if branches has different end node, we don't merge them
                        break
                if to_merge:
                    to_merge_node_list = [nodes[i] for i in succ_nodes_id]
                    merged_node_id, merged_node = self._merge_node(
                        to_merge_node_list, merge_type='branch', nodes=nodes)
                    nodes[merged_node_id] = merged_node
                    runtime_graph[merged_node_id] = [[], []]

                    # delete edges and add new edges
                    runtime_graph[merged_node_id][SUCC] = [end_node_id]
                    runtime_graph[merged_node_id][PRED] = edges[PRED]

                    runtime_graph[end_node_id][PRED] = [merged_node_id]
                    runtime_graph[node_id][SUCC] = [merged_node_id]

                    for i in succ_nodes_id:
                        runtime_graph.pop(i)
                    reduct_cnt += len(to_merge_node_list) - 1
        return reduct_cnt

    def get_runtime_cost(self):
        def get_node_cost(node):
            node_cost = node.cost + self.opcall_overhead
            if isinstance(node, MergedOpsCostNode):
                for it in node.node_list:
                    node_cost += self.opcall_overhead
            return node_cost

        for sub_idx in range(self.total_rank):
            fwd_cost = 0
            bwd_cost = 0
            optim_cost = 0
            for node_id in self.runtime_graph[sub_idx].keys():
                node = self.nodes[sub_idx][node_id]
                if node.is_optim:
                    optim_cost += get_node_cost(node)
                elif node.is_bwd:
                    bwd_cost += get_node_cost(node)
                else:
                    fwd_cost += get_node_cost(node)
            self.fwd_time.append(fwd_cost)
            self.bwd_time.append(bwd_cost)
            self.optim_time.append(optim_cost)
        return self.fwd_time, self.bwd_time, self.optim_time

    def get_mem(self):
        static_list = []
        top_list = []
        for sub_idx in range(self.total_rank):
            static_mem, cur_mem, top_mem = self._simulate_mem(
                self.nodes[sub_idx], self.origin_graph[sub_idx])
            static_list.append(static_mem)
            top_list.append(top_mem)
        return static_list, top_list

    def _simulate_mem(self, nodes, origin_graph):
        q = queue.Queue(1024)
        sim_graph = copy.deepcopy(origin_graph)
        for node_id, node in nodes.items():
            if len(sim_graph[node_id][PRED]) == 0:
                q.put(node_id)

        q.put('nop')
        cur_mem = 0
        top_mem = -1
        static_mem = 0
        while not q.empty():
            node_id = q.get()
            node = None
            size = 0
            if node_id == 'nop':
                top_mem = max(cur_mem, top_mem)
                if q.empty():
                    break
                else:
                    q.put(node_id)
                    continue
            else:
                node = nodes[node_id]
            if node.type == CostNodeType.VARIABLE:
                size = node.get_size()
                if node.node.persistable:
                    static_mem += size
                cur_mem += size
            edges = sim_graph[node_id]
            if not (node.type == CostNodeType.VARIABLE and
                    node.node.persistable):
                for succ_id in edges[SUCC]:
                    sim_graph[succ_id][PRED].remove(node_id)
                    if len(sim_graph[succ_id][PRED]) == 0:
                        q.put(succ_id)
            for pred_id in edges[PRED]:
                pred = nodes
                if pred.type == CostNodeType.VARIABLE:
                    sim_graph[pred_id][SUCC].remove(node_id)
                    if len(sim_graph[pred_id][
                            SUCC]) == 0 and not pred.node.persistable:
                        cur_mem -= pred.get_size()
        return static_mem, cur_mem, top_mem

    def get_pipeline_time(self):
        if self.total_rank <= 1:
            return self.fwd_time[0] + self.bwd_time[0] + self.optim_time[0]
        else:
            return self._simulate_pipeline()

    def _simulate_pipeline(self):
        stage_num = len(self.pp2rank)
        event_list = []
        global_time = [0] * stage_num
        total_time = 0
        fwd_cnt = list(range(stage_num, 0, -1))
        bwd_cnt = [self.microbatch_num] * stage_num
        q = queue.Queue(1024)

        for i in range(self.microbatch_num):
            q.put(PipeEvent(0, 'fwd', self.fwd_time[0]))

        while not q.empty():
            e = q.get()
            stid = e.stage_id
            if e.name == 'fwd':
                if fwd_cnt[stid] > 0:
                    e.s_time = max(global_time[stid], e.s_time)
                    e.e_time = e.s_time + e.duration
                    event_list.append(e)
                    if stid != stage_num - 1:
                        q.put(
                            PipeEvent(
                                stid + 1,
                                'fwd',
                                self.fwd_time[stid + 1],
                                start_time=e.e_time))
                    else:
                        q.put(
                            PipeEvent(
                                stid,
                                'bwd',
                                self.bwd_time[stid],
                                start_time=e.e_time))
                    fwd_cnt[stid] -= 1
                    global_time[stid] = e.e_time
                else:
                    q.put(e)
            elif e.name == 'bwd':
                e.s_time = max(global_time[stid], e.s_time)
                e.e_time = e.s_time + e.duration
                event_list.append(e)
                if stid != 0:
                    q.put(
                        PipeEvent(
                            stid - 1,
                            'bwd',
                            self.bwd_time[stid - 1],
                            start_time=e.e_time))
                fwd_cnt[stid] += 1
                bwd_cnt[stid] -= 1
                if bwd_cnt[stid] == 0:
                    q.put(
                        PipeEvent(
                            stid,
                            'optim',
                            self.optim_time[stid],
                            start_time=e.e_time))
                global_time[stid] = e.e_time
            elif e.name == 'optim':
                e.s_time = max(global_time[stid], e.s_time)
                e.e_time = e.s_time + e.duration
                event_list.append(e)
                global_time[stid] = e.e_time
            else:
                raise NotImplementedError(
                    'This type of pipe event is not supported yet.{}'.format(
                        e.name))

        for t in global_time:
            total_time = max(total_time, t)
        return total_time

    def get_cost(self):
        cost = Cost()
        static_mem, peak_mem = self.get_mem()
        cost.static_mem = static_mem
        cost.peak_mem = peak_mem
        self.merge_comm()
        while True:
            cnt = 0
            cnt += self.merge_linear()
            cnt += self.merge_branch()
            if cnt == 0:  # can't be further merged
                break
        self.get_runtime_cost()
        cost.runtime = self.get_pipeline_time()
        return cost

    def init(self, distributed_program):
        self.parse_program(distributed_program)
        self.build_op_graph()
        for sub_idx in range(self.total_rank):
            self.eliminate_multi_edges(self.op_graph[sub_idx])
        self.build_runtime_graph()


def estimate_cost(distributed_program, cluster, pipeline_config,
                  standalone_cost_data, batch_size):
    """
    Estimated cost from distributed program, cluster model and distributed settings.
    
    Args:
        distributed_program(list): list of paddle programs
        cluster(Cluster): cluster model 
        standalone_cost_data(CostData): cost data given by paddle.core
        batch_size(int): batch size of the training workload 
        pipeline_config(list): configuration of pipeline stage allocation
    """
    # the following line is left for now, cluster model will be involved in the future
    assert cluster is None, "For now, cluster remains None"
    cm_ctx = CostModel(
        cluster=cluster,
        batch_size=batch_size,
        standalone_cost_data=standalone_cost_data,
        pipeline_config=pipeline_config)
    cm_ctx.init(distributed_program)
    cost = cm_ctx.get_cost()
    return cost