label_smooth_op.cu 4.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/tensor.h"
16
#include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h"
Y
Yi Wang 已提交
17
#include "paddle/fluid/operators/label_smooth_op.h"
18 19
namespace paddle {
namespace operators {
Y
Yibing Liu 已提交
20

21
template <typename T>
22 23 24 25 26 27 28
struct LabelSmoothFunctor {
  T epsilon;
  T label_dim;

  __forceinline__ LabelSmoothFunctor(float epsilon_data, int label_dim_data) {
    epsilon = static_cast<T>(epsilon_data);
    label_dim = static_cast<T>(label_dim_data);
29
  }
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

  __device__ __forceinline__ T operator()(const T& x) const {
    return (static_cast<T>(1 - epsilon) * x +
            static_cast<T>(epsilon / label_dim));
  }
};

template <typename T>
struct LabelSmoothGradFunctor {
  T epsilon;

  __forceinline__ LabelSmoothGradFunctor(float epsilon_data) {
    epsilon = static_cast<T>(epsilon_data);
  }

  __device__ __forceinline__ T operator()(const T& x) const {
    return static_cast<T>(1 - epsilon) * x;
  }
};
49 50 51 52 53

template <typename T>
__global__ void LabelSmoothRunDistKernel(const int N, const float epsilon,
                                         const int dist_numel, const T* src,
                                         const T* dist_data, T* dst) {
54
  CUDA_KERNEL_LOOP(idx, N) {
55
    int dist_idx = idx % dist_numel;
56 57 58 59 60 61 62 63 64 65 66 67
    dst[idx] = static_cast<T>(1 - epsilon) * src[idx] +
               static_cast<T>(epsilon) * dist_data[dist_idx];
  }
}

template <typename DeviceContext, typename T>
class LabelSmoothGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* out_t = ctx.Output<framework::LoDTensor>("Out");
    auto* in_t = ctx.Input<framework::LoDTensor>("X");
    auto* dist_t = ctx.Input<framework::Tensor>("PriorDist");
68
    auto label_dim = in_t->dims()[in_t->dims().size() - 1];
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    auto epsilon = ctx.Attr<float>("epsilon");
    auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
    auto size_prob = in_t->numel();
    const T* in_data = in_t->data<T>();
    T* out_data = out_t->mutable_data<T>(ctx.GetPlace());
    int threads = 512;
    int grid = (size_prob + threads - 1) / threads;
    auto stream = ctx.cuda_device_context().stream();
    if (dist_t) {
      auto dist_numel = dist_t->numel();
      const T* dist_data = dist_t->data<T>();
      LabelSmoothRunDistKernel<T><<<grid, threads, 0, stream>>>(
          size_prob, epsilon, dist_numel, in_data, dist_data, out_data);

    } else {
84 85 86 87 88 89 90 91
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();

      std::vector<const framework::Tensor*> ins = {in_t};
      std::vector<framework::Tensor*> outs = {out_t};
      auto functor = LabelSmoothFunctor<T>(epsilon, label_dim);
      LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
          dev_ctx, ins, &outs, functor);
92 93 94 95 96 97 98 99 100 101 102 103 104
    }
  }
};

template <typename DeviceContext, typename T>
class LabelSmoothGradGPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const {
    auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    d_in_t->mutable_data<T>(ctx.GetPlace());

    auto epsilon = ctx.Attr<float>("epsilon");
105 106 107 108 109 110 111
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();

    std::vector<const framework::Tensor*> ins = {d_out_t};
    std::vector<framework::Tensor*> outs = {d_in_t};
    auto functor = LabelSmoothGradFunctor<T>(epsilon);
    LaunchSameDimsElementwiseCudaKernel<ElementwiseType::kUnary, T, T>(
        dev_ctx, ins, &outs, functor);
112 113 114 115
  }
};
}  // namespace operators
}  // namespace paddle
Y
Yibing Liu 已提交
116 117 118 119
namespace ops = paddle::operators;

REGISTER_OP_CUDA_KERNEL(
    label_smooth,
120 121
    ops::LabelSmoothGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LabelSmoothGPUKernel<paddle::platform::CUDADeviceContext, double>);
Y
Yibing Liu 已提交
122 123
REGISTER_OP_CUDA_KERNEL(
    label_smooth_grad,
124 125
    ops::LabelSmoothGradGPUKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LabelSmoothGradGPUKernel<paddle::platform::CUDADeviceContext, double>);