jit.py 57.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import os
import pickle
19
import warnings
20
import functools
21
from collections import OrderedDict
22
import six
C
Chen Weihang 已提交
23

24
import paddle
C
Chen Weihang 已提交
25 26

# deprecated module import
27
from paddle.fluid import core
28 29
from paddle.fluid.compiler import BuildStrategy, CompiledProgram, ExecutionStrategy
from paddle.fluid.data_feeder import check_type
30
from paddle.fluid.dygraph.base import program_desc_tracing_guard, switch_to_static_graph
31
from paddle.fluid.dygraph.dygraph_to_static import logging_utils
32
from paddle.fluid.dygraph.dygraph_to_static.logging_utils import set_code_level, set_verbosity
33
from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator, StaticLayer, unwrap_decorators
34
from paddle.fluid.dygraph.io import EXTRA_VAR_INFO_FILENAME, VARIABLE_FILENAME, TranslatedLayer
35 36
from paddle.fluid.dygraph.layers import Layer
from paddle.fluid.executor import Executor, scope_guard
37 38 39
from paddle.fluid.framework import Block, ParamBase, Program, Variable
from paddle.fluid.framework import _current_expected_place, _dygraph_guard, _dygraph_tracer
from paddle.fluid.framework import dygraph_only, in_dygraph_mode
40
from paddle.fluid.wrapped_decorator import wrap_decorator
41

42 43
__all__ = [
    'TracedLayer', 'declarative', 'dygraph_to_static_func', 'set_code_level',
C
Chen Weihang 已提交
44
    'set_verbosity', 'save', 'load', 'SaveLoadConfig'
45
]
46 47 48 49 50 51 52 53 54 55 56 57


def create_program_from_desc(program_desc):
    program = Program()
    program.desc = program_desc
    program.blocks = [Block(program, 0)]
    program._sync_with_cpp()
    return program


def _extract_vars(inputs, result_list):
    if isinstance(inputs, Variable):
58
        result_list.append(inputs)
59
    elif isinstance(inputs, (list, tuple)):
60 61
        for var in inputs:
            _extract_vars(var, result_list)
62 63 64 65
    else:
        raise TypeError(
            "The type of 'each element of inputs' in fluid.dygraph.jit.TracedLayer.trace must be fluid.Variable, but received {}.".
            format(type(inputs)))
66 67 68 69 70 71 72 73


def extract_vars(inputs):
    result_list = []
    _extract_vars(inputs, result_list)
    return result_list


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
def _dygraph_to_static_func_(dygraph_func):
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @dygraph_to_static_func only converts imperative dygraph APIs into
    declarative net-building APIs, which means it doesn't return immediate
    digital result as imperative mode. Users should handle Program and Executor
    by themselves.

    Note:
    This decorator is NOT our recommended way to transform imperative function
    to declarative function. We will remove this decorator after we finalize
    cleaning up code.

    Args:
        dygraph_func (callable): callable imperative function.

    Returns:
        Callable: converting imperative dygraph APIs into declarative
        net-building APIs.

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import dygraph_to_static_func

          @dygraph_to_static_func
          def func(x):
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1

               return x_v

          x = fluid.layers.fill_constant(shape=[3, 3], value=0, dtype='float64')

          x_v = func(x)
          exe = fluid.Executor(fluid.CPUPlace())
          out = exe.run(fetch_list=[x_v])
          print(out[0])
          # [[1. 1. 1.]
          #  [1. 1. 1.]
          #  [1. 1. 1.]]

    """

    # TODO: remove this decorator after we finalize training API
123 124
    def __impl__(*args, **kwargs):
        program_translator = ProgramTranslator()
125
        if in_dygraph_mode() or not program_translator.enable_to_static:
126
            logging_utils.warn(
127
                "The decorator 'dygraph_to_static_func' doesn't work in "
128
                "dygraph mode or set ProgramTranslator.enable to False. "
129 130 131 132
                "We will just return dygraph output.")
            return dygraph_func(*args, **kwargs)
        static_func = program_translator.get_func(dygraph_func)
        return static_func(*args, **kwargs)
133 134 135 136

    return __impl__


137
dygraph_to_static_func = wrap_decorator(_dygraph_to_static_func_)
138

139

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
def copy_decorator_attrs(original_func, decorated_obj):
    """
    Copies some necessary attributes from original function into decorated function.

    Args:
        original_func(callable): the original decorated function.
        decorated_obj(StaticLayer): the target decorated StaticLayer object.
    """
    decorator_name = "declarative"

    decorated_obj.__name__ = original_func.__name__
    decorated_obj._decorator_name = decorator_name
    decorated_obj.__wrapped__ = original_func
    decorated_obj.__doc__ = original_func.__doc__
    if hasattr(original_func, "__module__"):
        decorated_obj.__module__ = original_func.__module__

    return decorated_obj


def declarative(function=None, input_spec=None):
161 162 163
    """
    Converts imperative dygraph APIs into declarative function APIs. Decorator
    @declarative handles the Program and Executor of static mode and returns
164 165 166 167
    the result as dygraph Tensor(s). Users could use the returned dygraph
    Tensor(s) to do imperative training, inference, or other operations. If the
    decorated function calls other imperative function, the called one will be
    converted into declarative function as well.
168

169
    Args:
170 171 172
        function (callable): callable imperative function.
        input_spec(list[InputSpec]): list of InputSpec to specific the shape/dtype/name
            information of each input Tensor.
173

174
    Returns:
175
        Tensor(s): containing the numerical result.
176

177 178
    Examples:
        .. code-block:: python
179

180 181 182
          import paddle.fluid as fluid
          import numpy as np
          from paddle.fluid.dygraph.jit import declarative
183

184
          fluid.enable_dygraph()
185

186 187 188 189 190 191 192 193
          @declarative
          def func(x):
              x = fluid.dygraph.to_variable(x)
              if fluid.layers.mean(x) < 0:
                  x_v = x - 1
              else:
                  x_v = x + 1
              return x_v
194

195 196 197
          x = np.ones([1, 2])
          x_v = func(x)
          print(x_v.numpy()) # [[2. 2.]]
198

199
    """
200

201 202 203 204 205 206
    def decorated(python_func):
        """
        Decorates a python function into a StaticLayer object.
        """
        # Step 1. unwrap the function if it is already decorated.
        _, python_func = unwrap_decorators(python_func)
207

208 209 210 211 212 213 214
        # Step 2. copy some attributes from original python function.
        static_layer = copy_decorator_attrs(
            original_func=python_func,
            decorated_obj=StaticLayer(
                function=python_func, input_spec=input_spec))

        return static_layer
215

216 217
    # for usage: `declarative(foo, ...)`
    if function is not None:
218 219 220
        if isinstance(function, Layer):
            if isinstance(function.forward, StaticLayer):
                class_name = function.__class__.__name__
221
                logging_utils.warn(
222 223 224 225 226 227
                    "`{}.forward` has already been decorated somewhere. It will be redecorated to replace previous one.".
                    format(class_name))
            function.forward = decorated(function.forward)
            return function
        else:
            return decorated(function)
228

229 230
    # for usage: `@declarative`
    return decorated
231 232


233 234 235 236 237 238 239 240 241 242 243 244
class SaveLoadConfig(object):
    """
    The additional configuration options may be used in function 
    :ref:`api_imperative_jit_save` that save :ref:`api_imperative_TranslatedLayer` 
    or used in function :ref:`api_imperative_jit_load` that 
    load :ref:`api_imperative_TranslatedLayer` .
    
    Examples:
        1. Using ``SaveLoadConfig`` when saving model

        .. code-block:: python

245 246 247
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
248

249
            class SimpleNet(nn.Layer):
250 251
                def __init__(self, in_size, out_size):
                    super(SimpleNet, self).__init__()
252
                    self._linear = nn.Linear(in_size, out_size)
253

254
                @paddle.jit.to_static
255 256 257 258 259 260
                def forward(self, x):
                    y = self._linear(x)
                    z = self._linear(y)
                    return z

            # enable dygraph mode
261
            paddle.disable_static() 
262 263 264

            # train model
            net = SimpleNet(8, 8)
265 266
            adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
            x = paddle.randn([4, 8], 'float32')
267 268
            for i in range(10):
                out = net(x)
269
                loss = paddle.tensor.mean(out)
270
                loss.backward()
271 272
                adam.step()
                adam.clear_grad()
273 274 275

            # use SaveLoadconfig when saving model
            model_path = "simplenet.example.model"
276 277 278
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            paddle.jit.save(
279 280
                layer=net,
                model_path=model_path,
281
                config=config)
282 283 284 285 286

        2. Using ``SaveLoadConfig`` when loading model

        .. code-block:: python

287
            import paddle
288 289

            # enable dygraph mode
290
            paddle.disable_static() 
291 292 293

            # use SaveLoadconfig when loading model
            model_path = "simplenet.example.model"
294 295 296
            config = paddle.SaveLoadConfig()
            config.model_filename = "__simplenet__"
            infer_net = paddle.jit.load(model_path, config=config)
297
            # inference
298
            x = paddle.randn([4, 8], 'float32')
299 300 301 302 303 304 305 306
            pred = infer_net(x)
    """

    def __init__(self):
        self._output_spec = None
        self._model_filename = None
        self._params_filename = None
        self._separate_params = False
307 308
        # used for `paddle.load`
        self._keep_name_table = False
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337

        # NOTE: Users rarely use following configs, so these configs are not open to users,
        # reducing user learning costs, but we retain the configuration capabilities

        # If True, programs are modified to only support direct inference deployment. 
        # Otherwise,more information will be stored for flexible optimization and re-training. 
        # Currently, only True is supported
        self._export_for_deployment = True

        # If True, It will save inference program only, and do not save params of Program
        self._program_only = False

    @property
    def output_spec(self):
        """
        Selects the output targets of the saved model ( :ref:`api_imperative_TranslatedLayer` ).
        By default, all return variables of original Layer's forward function
        are kept as the output of the saved TranslatedLayer.

        The ``output_spec`` type should be list[Variable]. If the provided ``output_spec``
        list is not all output variables, the saved model will be pruned according to the
        given ``output_spec`` list.

        .. note::
            The ``output_spec`` is only used when saving model.

        Examples:
            .. code-block:: python

338 339 340
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
341

342
                class SimpleNet(nn.Layer):
343 344
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
345
                        self._linear = nn.Linear(in_size, out_size)
346

347
                    @paddle.jit.to_static
348 349 350
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
351
                        loss = paddle.tensor.mean(z)
352 353 354
                        return z, loss

                # enable dygraph mode
355
                paddle.disable_static() 
356 357 358

                # train model
                net = SimpleNet(8, 8)
359 360
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
361 362 363
                for i in range(10):
                    out, loss = net(x)
                    loss.backward()
364 365
                    adam.step()
                    adam.clear_grad()
366 367 368

                # use SaveLoadconfig.output_spec
                model_path = "simplenet.example.model.output_spec"
369 370 371
                config = paddle.SaveLoadConfig()
                config.output_spec = [out]
                paddle.jit.save(
372 373
                    layer=net,
                    model_path=model_path,
374
                    config=config)
375

376 377
                infer_net = paddle.jit.load(model_path)
                x = paddle.randn([4, 8], 'float32')
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
                pred = infer_net(x)
        """
        return self._output_spec

    @output_spec.setter
    def output_spec(self, spec):
        if not isinstance(spec, list):
            raise TypeError(
                "The SaveLoadConfig.output_spec should be 'list', but received input type is %s."
                % type(input))
            for var in spec:
                if not isinstance(var, core.VarBase):
                    raise TypeError(
                        "The element in SaveLoadConfig.output_spec list should be 'Variable', but received element's type is %s."
                        % type(var))
        self._output_spec = spec

    @property
    def model_filename(self):
        """
        The name of file to save the translated program of target Layer.
        Default filename is :code:`__model__` .

401
        Examples:
402 403
            .. code-block:: python

404 405 406
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
407

408
                class SimpleNet(nn.Layer):
409 410
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
411
                        self._linear = nn.Linear(in_size, out_size)
412

413
                    @paddle.jit.to_static
414 415 416 417 418 419
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
420
                paddle.disable_static() 
421 422 423

                # train model
                net = SimpleNet(8, 8)
424 425
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
426 427
                for i in range(10):
                    out = net(x)
428
                    loss = paddle.tensor.mean(out)
429
                    loss.backward()
430 431
                    adam.step()
                    adam.clear_grad()
432 433

                # saving with configs.model_filename
434 435 436 437
                model_path = "simplenet.example.model.model_filename"
                config = paddle.SaveLoadConfig()
                config.model_filename = "__simplenet__"
                paddle.jit.save(
438 439
                    layer=net,
                    model_path=model_path,
440
                    config=config)
441 442

                # loading with configs.model_filename
443 444
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                pred = infer_net(x)
        """
        return self._model_filename

    @model_filename.setter
    def model_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.model_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.model_filename is empty string.")
        self._model_filename = filename

    @property
    def params_filename(self):
        """
        The name of file to save all persistable variables in target Layer. 
        Default file name is :code:`__variables__` .
        
466
        Examples:
467 468
            .. code-block:: python

469 470 471
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
472

473
                class SimpleNet(nn.Layer):
474 475
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
476
                        self._linear = nn.Linear(in_size, out_size)
477

478
                    @paddle.jit.to_static
479 480 481 482 483 484
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
485
                paddle.disable_static() 
486 487 488

                # train model
                net = SimpleNet(8, 8)
489 490
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
491 492
                for i in range(10):
                    out = net(x)
493
                    loss = paddle.tensor.mean(out)
494
                    loss.backward()
495 496
                    adam.step()
                    adam.clear_grad()
497 498

                model_path = "simplenet.example.model.params_filename"
499 500
                config = paddle.SaveLoadConfig()
                config.params_filename = "__params__"
501 502

                # saving with configs.params_filename
503
                paddle.jit.save(
504 505
                    layer=net,
                    model_path=model_path,
506
                    config=config)
507 508

                # loading with configs.params_filename
509 510
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
                pred = infer_net(x)
        """
        return self._params_filename

    @params_filename.setter
    def params_filename(self, filename):
        if not isinstance(filename, six.string_types):
            raise TypeError(
                "The SaveLoadConfig.params_filename should be str, but received input's type is %s."
                % type(filename))
        if len(filename) == 0:
            raise ValueError(
                "The SaveLoadConfig.params_filename is empty string.")
        self._params_filename = filename

    # NOTE: [why not use params_filename=None control params saved separately]
    # The new save interface does not recommend parameters to be saved separately. 
    # Here, the concept should be separated as clearly as possible. 
    # Setting params_filename=None only means that the saved file name is set 
    # and without any other meaning. New separate_params control for file saved
    # separately can makes the concept clearer.
    @property
    def separate_params(self):
        """
        Configure whether to save the Layer parameters as separete files.
        (In order to be compatible with the behavior of :ref:`api_fluid_io_save_inference_model` )

        If True, each parameter will be saved to a file separately, the file name is the parameter name,
        and the SaveLoadConfig.params_filename configuration will not take effect. Default False.

        Examples:
            .. code-block:: python

544 545 546
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt
547

548
                class SimpleNet(nn.Layer):
549 550
                    def __init__(self, in_size, out_size):
                        super(SimpleNet, self).__init__()
551
                        self._linear = nn.Linear(in_size, out_size)
552

553
                    @paddle.jit.to_static
554 555 556 557 558 559
                    def forward(self, x):
                        y = self._linear(x)
                        z = self._linear(y)
                        return z

                # enable dygraph mode
560
                paddle.disable_static() 
561 562 563

                # train model
                net = SimpleNet(8, 8)
564 565
                adam = opt.Adam(learning_rate=0.1, parameters=net.parameters())
                x = paddle.randn([4, 8], 'float32')
566 567
                for i in range(10):
                    out = net(x)
568
                    loss = paddle.tensor.mean(out)
569
                    loss.backward()
570 571
                    adam.step()
                    adam.clear_grad()
572 573

                model_path = "simplenet.example.model.separate_params"
574 575
                config = paddle.jit.SaveLoadConfig()
                config.separate_params = True
576 577

                # saving with configs.separate_params
578
                paddle.jit.save(
579 580
                    layer=net,
                    model_path=model_path,
581
                    config=config)
582 583 584 585
                # [result] the saved model directory contains:
                # linear_0.b_0  linear_0.w_0  __model__  __variables.info__

                # loading with configs.params_filename
586 587
                infer_net = paddle.jit.load(model_path, config=config)
                x = paddle.randn([4, 8], 'float32')
588 589 590 591 592 593 594 595 596 597 598 599
                pred = infer_net(x)
        """
        return self._separate_params

    @separate_params.setter
    def separate_params(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.separate_params should be bool value, but received input's type is %s."
                % type(value))
        self._separate_params = value

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    @property
    def keep_name_table(self):
        """
        Configures whether keep ``structured_name -> parameter_name`` dict in loaded state dict.
        This dict is the debugging information saved when call `paddle.save`. 
        It is generally only used for debugging and does not affect the actual training or inference. 
        By default, it will not be retained in `paddle.load` result. Default: False.
        
        .. note::
            Only used for ``paddle.load``.

        Examples:
            .. code-block:: python

                import paddle
            
                paddle.disable_static()

                linear = paddle.nn.Linear(5, 1)

                state_dict = linear.state_dict()
                paddle.save(state_dict, "paddle_dy")

                configs = paddle.SaveLoadConfig()
                configs.keep_name_table = True
                para_state_dict, _ = paddle.load("paddle_dy", configs)

                print(para_state_dict)
                # the name_table is 'StructuredToParameterName@@'
                # {'bias': array([0.], dtype=float32), 
                #  'StructuredToParameterName@@': 
                #     {'bias': u'linear_0.b_0', 'weight': u'linear_0.w_0'}, 
                #  'weight': array([[ 0.04230034],
                #     [-0.1222527 ],
                #     [ 0.7392676 ],
                #     [-0.8136974 ],
                #     [ 0.01211023]], dtype=float32)}
        """
        return self._keep_name_table

    @keep_name_table.setter
    def keep_name_table(self, value):
        if not isinstance(value, bool):
            raise TypeError(
                "The SaveLoadConfig.keep_name_table should be bool value, but received input's type is %s."
                % type(value))
        self._keep_name_table = value

648

C
Chen Weihang 已提交
649 650 651 652 653 654 655 656 657 658 659 660
# NOTE(chenweihang): change jit.save/load argument `configs` to `config`
def deprecate_save_load_configs(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'configs' in kwargs:
            kwargs['config'] = kwargs['configs']
            kwargs.pop('configs')
        return func(*args, **kwargs)

    return wrapper


661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
def _get_input_var_names(inputs, input_spec):
    name_none_error = "The %s's name is None. " \
        "When using jit.save, please set InputSepc's name in " \
        "to_static(input_spec=[]) and jit.save(input_spec=[]) " \
        "and make sure they are consistent."
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of InputSpec or example Tensor " \
        "in input_spec is the same as the name of InputSpec in " \
        "`to_static` decorated on the Layer.forward method."
    result_list = []
    input_var_names = [var.name for var in inputs if isinstance(var, Variable)]
    if input_spec is None:
        # no prune
        result_list = input_var_names
    elif input_spec is not None and len(input_spec) == len(input_var_names):
        # no prune
        result_list = input_var_names
        # if input spec name not in input_var_names, only raise warning 
        for spec in input_spec:
            if spec.name is None:
                warnings.warn(name_none_error % spec)
            elif spec.name not in input_var_names:
                warnings.warn(name_no_exists_error % spec.name)
            else:
                # do nothing
                pass
    else:
        # prune
        for spec in input_spec:
            if spec.name is None:
                # name is None, the input_spec only can be InputSpec
                raise ValueError(name_none_error % spec)
            elif spec.name not in input_var_names:
                # the input_spec can be `InputSpec` or `VarBase`
                raise ValueError(name_no_exists_error % spec.name)
            else:
                result_list.append(spec.name)

    return result_list


def _get_output_vars(outputs, output_spec):
    name_no_exists_error = "The tensor `%s` does not exists. " \
        "Please make sure the name of example Tensor " \
        "in configs.output_spec is the output tensor of " \
        "Layer.forward method."
    result_list = []
    output_vars_dict = OrderedDict()
    for var in outputs:
        if isinstance(var, Variable):
            output_vars_dict[var.name] = var
    if output_spec is None:
C
Chen Weihang 已提交
713
        result_list = list(output_vars_dict.values())
714
    elif output_spec is not None and len(output_spec) == len(output_vars_dict):
C
Chen Weihang 已提交
715
        result_list = list(output_vars_dict.values())
716 717 718 719 720 721 722 723 724 725 726 727
        for var in output_spec:
            if var.name not in output_vars_dict:
                warnings.warn(name_no_exists_error % var.name)
    else:
        for var in output_spec:
            if var.name not in output_vars_dict:
                raise ValueError(name_no_exists_error % var.name)
            else:
                result_list.append(output_vars_dict[var.name])
    return result_list


C
Chen Weihang 已提交
728 729 730 731 732 733 734 735 736 737
def _infer_input_check(layer, input_spec):
    prog_translator = ProgramTranslator()
    if not prog_translator.enable_to_static:
        raise RuntimeError(
            "The paddle.jit.save doesn't work when setting ProgramTranslator.enable to False."
        )
    if not isinstance(layer, Layer):
        raise TypeError(
            "The input layer of paddle.jit.save should be 'Layer', but received layer type is %s."
            % type(layer))
738

C
Chen Weihang 已提交
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
    # avoid change user given input_spec
    inner_input_spec = None
    if input_spec is not None:
        if not isinstance(input_spec, list):
            raise TypeError(
                "The input input_spec should be 'list', but received input_spec's type is %s."
                % type(input_spec))
        inner_input_spec = []
        for var in input_spec:
            if isinstance(var, paddle.static.InputSpec):
                inner_input_spec.append(var)
            elif isinstance(var, (core.VarBase, Variable)):
                inner_input_spec.append(
                    paddle.static.InputSpec.from_tensor(var))
            else:
                raise TypeError(
                    "The element in input_spec list should be 'Variable' or `paddle.static.InputSpec`, but received element's type is %s."
                    % type(var))
    return inner_input_spec


def _get_concrete_program_from_layer(layer, inner_input_spec):
    # TODO(chenweihang): add support for other method, not only forward
    if isinstance(layer.forward, StaticLayer):
        concrete_program = layer.forward.concrete_program
    else:
        # transform in jit.save, if input_spec is incomplete, declarative will throw error
        static_forward = declarative(layer.forward, input_spec=inner_input_spec)
        concrete_program = static_forward.concrete_program
        # the input_spec has been used in declarative, which is equal to 
        # @declarative with input_spec and jit.save without input_spec,
        # avoid needless warning
        inner_input_spec = None
    return concrete_program


def _build_input_and_output(concrete_program, inner_input_spec, config):
    # NOTE(chenweihang): [ Get input variables name ]
    # There are two cases, whether to prune the inputs or not
    # - not prune inputs (recommend):
    #   - the len(input_spec) == len((concrete_program.inputs) - 1
    #   - here can use concrete_program.inputs directly
    # - prune inputs:
    #   - the input_spec length < len((concrete_program.inputs) - 1
    #   - the input_spec's name should be in concrete_program.inputs
    input_var_names = _get_input_var_names(concrete_program.inputs,
                                           inner_input_spec)

    # NOTE(chenweihang): [ Get output variables ]
    # the rule is like [ Get input variables name ]. For output var, 
    # we only support VarBase spec, and actually, we only need the 
    # var name of output, and we don't recommended to use output_spec
    output_vars = _get_output_vars(concrete_program.outputs, config.output_spec)

    return input_var_names, output_vars


# NOTE: This function is not exposed to users, only used for paddle2onnx now
@switch_to_static_graph
def get_inference_program(layer, input_spec=None, config=None):
    # 1. input check
    inner_input_spec = _infer_input_check(layer, input_spec)

    if config is None:
        config = SaveLoadConfig()

    # 2. get program from Layer
    concrete_program = _get_concrete_program_from_layer(layer, inner_input_spec)

    # 3. build input & output of save_infernece_model
    input_var_names, output_vars = _build_input_and_output(
        concrete_program, inner_input_spec, config)

    # 4. only get inference program
    inference_program = paddle.fluid.io.get_inference_program(
        input_var_names, output_vars, concrete_program.main_program.clone())

    return inference_program
817 818 819


@deprecate_save_load_configs
820
@switch_to_static_graph
821
def save(layer, model_path, input_spec=None, config=None):
822 823 824 825 826 827 828 829 830 831
    """
    Saves input declarative Layer as :ref:`api_imperative_TranslatedLayer` 
    format model, which can be used for inference or fine-tuning after loading.

    It will save the translated program and all related persistable 
    variables of input declarative Layer to given ``model_path``.
    
    The default saved translated program file name is ``__model__``,
    and the default saved persistable variables file name is ``__variables__``,
    and it also saved some additional variable description information to file 
832
    ``__variables.info__``, these additional information is used in fine-tuning.
833 834 835 836 837 838 839 840 841

    The saved model can be loaded by follow APIs:
      - :ref:`api_imperative_jit_load`
      - :ref:`api_fluid_io_load_inference_model` (need pass ``params_filename='__variables__'``)
      - Other C++ inference APIs

    Args:
        layer (Layer): the Layer to be saved. The Layer should be decorated by `@declarative`.
        model_path (str): the directory to save the model.
842
        input_spec (list[Variable], optional): Describes the input of the saved model. 
843 844 845
            It is the example inputs that will be passed to saved TranslatedLayer's forward
            function. If None, all input variables of the original Layer's forward function
            would be the inputs of the saved model. Default None.
846
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object
847 848 849 850 851 852 853 854
            that specifies additional configuration options. Default None.
    Returns:
        None

    Examples:
        .. code-block:: python

            import numpy as np
855 856 857
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
858

859 860 861
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
862

863 864 865 866 867 868 869
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
870

871 872 873 874
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
875

876 877
                def __len__(self):
                    return self.num_samples
878

879 880
            class LinearNet(nn.Layer):
                def __init__(self):
881
                    super(LinearNet, self).__init__()
882
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
883

884
                @paddle.jit.to_static
885 886 887
                def forward(self, x):
                    return self._linear(x)

888 889 890 891 892 893 894 895 896 897 898
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

899
            # enable dygraph mode
900 901
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
902

903
            # 1. train & save model.
904

905 906 907 908
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
909

910 911 912 913 914 915 916 917
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
918

919 920
            # train
            train(layer, loader, loss_fn, adam)
921

922
            # save
923
            model_path = "linear.example.model"
924
            paddle.jit.save(layer, model_path)
925 926
    """
    # 1. input check
C
Chen Weihang 已提交
927
    inner_input_spec = _infer_input_check(layer, input_spec)
928

C
Chen Weihang 已提交
929 930
    if config is None:
        config = SaveLoadConfig()
931

932
    # 2. get program from Layer
C
Chen Weihang 已提交
933
    concrete_program = _get_concrete_program_from_layer(layer, inner_input_spec)
934 935

    # 3. build input & output of save_infernece_model
C
Chen Weihang 已提交
936 937
    input_var_names, output_vars = _build_input_and_output(
        concrete_program, inner_input_spec, config)
938 939

    # NOTE(chenweihang): we maintain the mapping of variable name to
940 941 942 943
    # structured name, the buffer variable (non-persistable)
    # saved to inference program may not need by dygraph Layer, 
    # we only record the state_dict variable's structured name
    state_names_dict = dict()
944
    for structured_name, var in six.iteritems(layer.state_dict()):
945 946
        state_names_dict[var.name] = structured_name

947
    # 4. share parameters from Layer to scope & record var info
948 949
    scope = core.Scope()
    extra_var_info = dict()
950
    for param_or_buffer in concrete_program.parameters:
951 952 953 954 955 956
        # share to scope
        param_or_buffer_tensor = scope.var(param_or_buffer.name).get_tensor()
        src_tensor = param_or_buffer.value().get_tensor()
        param_or_buffer_tensor._share_data_with(src_tensor)
        # record var info
        extra_info_dict = dict()
957 958 959
        if param_or_buffer.name in state_names_dict:
            extra_info_dict['structured_name'] = state_names_dict[
                param_or_buffer.name]
960 961 962 963 964 965 966 967 968
        extra_info_dict['stop_gradient'] = param_or_buffer.stop_gradient
        if isinstance(param_or_buffer, ParamBase):
            extra_info_dict['trainable'] = param_or_buffer.trainable
        extra_var_info[param_or_buffer.name] = extra_info_dict

    # 5. save inference model
    from paddle.fluid.io import save_inference_model

    # VARIABLE_FILENAME keep nameing style consistent with '__model__'
C
Chen Weihang 已提交
969 970
    if config.params_filename is None:
        config.params_filename = VARIABLE_FILENAME
971 972 973 974 975 976 977 978

    with scope_guard(scope):
        save_inference_model(
            dirname=model_path,
            feeded_var_names=input_var_names,
            target_vars=output_vars,
            executor=Executor(_current_expected_place()),
            main_program=concrete_program.main_program.clone(),
C
Chen Weihang 已提交
979
            model_filename=config.model_filename,
980
            params_filename=None
C
Chen Weihang 已提交
981 982 983
            if config.separate_params else config.params_filename,
            export_for_deployment=config._export_for_deployment,
            program_only=config._program_only)
984

985
        # NOTE(chenweihang): [ Save extra variable info ]
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        # save_inference_model will lose some important variable information, including:
        #   - Variable name and correspondence (when saved variables as one file)
        #   - Variable.stop_gradient information
        #   - Which persistent variable are parameter and which are not
        #   - Parameter.trainable information
        #
        # The lost information cannot be recovered when it is loaded again, 
        # so if we want to perform fine-tune after loading, we may need to 
        # configure redundant information to proceed.
        #
        # Due to compatibility issues, we cannot change the original storage structure, 
        # but we can save these information in `jit.save` without changing the original 
        # storage to improve user experience. So we save extra information into
        # file `__variables.info__`
        extra_var_info_path = os.path.join(model_path, EXTRA_VAR_INFO_FILENAME)
        with open(extra_var_info_path, 'wb') as f:
            pickle.dump(extra_var_info, f, protocol=2)


1005
@deprecate_save_load_configs
1006
@dygraph_only
1007
def load(model_path, config=None):
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
    """
    :api_attr: imperative

    Load model saved by :ref:`api_imperative_jit_save` or :ref:`api_fluid_io_save_inference_model`
    as :ref:`api_imperative_TranslatedLayer`, then performing inference or fine-tune training.

    .. note::
        For some historical reasons, if you load model saved by :ref:`api_fluid_io_save_inference_model`,
        there will be the following limitations when using it in fine-tuning:
        1. Imperative mode do not support LoDTensor. All original model's feed targets or parametars that depend on LoD are temporarily unavailable.
1018
        2. All saved model's feed targets need to be passed into TranslatedLayer's forward function.
1019 1020 1021 1022 1023
        3. The variable's ``stop_gradient`` information is lost and can not be recovered.
        4. The parameter's ``trainable`` information is lost and can not be recovered.

    Args:
        model_path (str): The directory path where the model is saved.
1024
        config (SaveLoadConfig, optional): :ref:`api_imperative_jit_saveLoadConfig` object that specifies 
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            additional configuration options. Default None.

    Returns:
        TranslatedLayer: A Layer object can run saved translated model.

    Examples:
        1. Load model saved by :ref:`api_imperative_jit_save` then performing inference and fine-tune training.

        .. code-block:: python

            import numpy as np
1036 1037 1038
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1039

1040 1041 1042
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1043

1044 1045
            IMAGE_SIZE = 784
            CLASS_NUM = 10
1046

1047 1048 1049 1050
            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1051

1052 1053 1054 1055
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1056

1057 1058 1059 1060 1061
                def __len__(self):
                    return self.num_samples

            class LinearNet(nn.Layer):
                def __init__(self):
1062
                    super(LinearNet, self).__init__()
1063
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1064

1065
                @paddle.jit.to_static
1066 1067 1068
                def forward(self, x):
                    return self._linear(x)

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1080
            # enable dygraph mode
1081 1082
            place = paddle.CPUPlace()
            paddle.disable_static(place) 
1083 1084

            # 1. train & save model.
1085

1086
            # create network
1087 1088 1089 1090
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

1091
            # create data loader
1092 1093 1094 1095 1096 1097 1098
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1099

1100 1101
            # train
            train(layer, loader, loss_fn, adam)
1102

1103 1104 1105
            # save
            model_path = "linear.example.model"
            paddle.jit.save(layer, model_path)
1106

1107
            # 2. load model
1108

1109 1110
            # load
            loaded_layer = paddle.jit.load(model_path)
1111 1112

            # inference
1113 1114 1115
            loaded_layer.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
            pred = loaded_layer(x)
1116 1117

            # fine-tune
1118 1119 1120
            loaded_layer.train()
            adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
            train(loaded_layer, loader, loss_fn, adam)
1121 1122 1123 1124 1125 1126 1127


        2. Load model saved by :ref:`api_fluid_io_save_inference_model` then performing and fine-tune training.

        .. code-block:: python

            import numpy as np
1128
            import paddle
1129
            import paddle.fluid as fluid
1130 1131
            import paddle.nn as nn
            import paddle.optimizer as opt
1132

1133 1134 1135
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1136

1137 1138 1139 1140 1141 1142 1143
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1144

1145 1146 1147 1148
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1149

1150 1151
                def __len__(self):
                    return self.num_samples
1152

1153
            image = fluid.data(name='image', shape=[None, 784], dtype='float32')
1154
            label = fluid.data(name='label', shape=[None, 1], dtype='int64')
1155
            pred = fluid.layers.fc(input=image, size=10, act='softmax')
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
            loss = fluid.layers.cross_entropy(input=pred, label=label)
            avg_loss = fluid.layers.mean(loss)

            optimizer = fluid.optimizer.SGD(learning_rate=0.001)
            optimizer.minimize(avg_loss)

            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

1166 1167 1168 1169 1170 1171 1172 1173 1174
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                feed_list=[image, label],
                places=place,
                batch_size=BATCH_SIZE, 
                shuffle=True,
                drop_last=True,
                num_workers=2)
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

            # 1. train and save inference model
            for data in loader():
                exe.run(
                    fluid.default_main_program(),
                    feed=data, 
                    fetch_list=[avg_loss])

            model_path = "fc.example.model"
            fluid.io.save_inference_model(
1185 1186 1187
                model_path, ["image"], [pred], exe)

            # 2. load model
1188 1189

            # enable dygraph mode
1190 1191 1192 1193
            paddle.disable_static(place)

            # load
            fc = paddle.jit.load(model_path)
1194

1195 1196 1197
            # inference
            fc.eval()
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1198 1199
            pred = fc(x)

1200
            # fine-tune
1201
            fc.train()
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
            loader = paddle.io.DataLoader(dataset,
                places=place,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
            for epoch_id in range(EPOCH_NUM):
                for batch_id, (image, label) in enumerate(loader()):
                    out = fc(image)
                    loss = loss_fn(out, label)
                    loss.backward()
                    adam.step()
                    adam.clear_grad()
                    print("Epoch {} batch {}: loss = {}".format(
                        epoch_id, batch_id, np.mean(loss.numpy())))
1219
    """
1220
    return TranslatedLayer._construct(model_path, config)
1221 1222


1223
@dygraph_only
Z
Zeng Jinle 已提交
1224 1225 1226 1227 1228
def _trace(layer,
           inputs,
           feed_prefix='feed_',
           fetch_prefix='fetch_',
           tmp_prefix='t_'):
1229
    assert isinstance(layer, Layer)
1230 1231 1232 1233 1234 1235 1236 1237 1238

    if not isinstance(inputs, (list, tuple)):
        inputs = [inputs]

    tracer = _dygraph_tracer()._get_program_desc_tracer()

    var_list = extract_vars(inputs)

    with program_desc_tracing_guard(True):
1239
        original_outputs = layer(*inputs)
1240 1241 1242 1243
        if not isinstance(original_outputs, (list, tuple)):
            outputs = [original_outputs]
        else:
            outputs = original_outputs
1244
        out_vars = [var for var in outputs]
1245

1246
        program_desc, feed_names, fetch_names, parameters = tracer.create_program_desc(
Z
Zeng Jinle 已提交
1247
            var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix)
1248 1249 1250 1251 1252
        tracer.reset()

    with _dygraph_guard(None):
        program = create_program_from_desc(program_desc)

1253
    return original_outputs, program, feed_names, fetch_names, parameters
1254 1255 1256 1257


class TracedLayer(object):
    """
1258 1259
    :api_attr: imperative
    
1260 1261 1262 1263 1264
    TracedLayer is used to convert a forward dygraph model to a static
    graph model. This is mainly used to save the dygraph model for online
    inference using C++. Besides, users can also do inference in Python
    using the converted static graph model, which usually has better
    performance than the original dygraph model.
1265 1266 1267 1268

    TracedLayer would run the static graph model using :code:`Executor`
    and :code:`CompiledProgram` . The static graph model would share
    parameters with the dygraph model.
1269 1270

    All TracedLayer objects should not be created by constructor and should
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
    be created by static method :code:`TracedLayer.trace(layer, inputs)` .

    The TracedLayer can only be used to convert the data-independent dygraph
    model into the static graph model, which means the dygraph model should
    be independent with the tensor data and shape.
    """

    def __init__(self, program, parameters, feed_names, fetch_names):
        self._program = program
        self._feed_names = feed_names
        self._fetch_names = fetch_names
1282
        self._params = parameters
1283 1284 1285 1286 1287

        self._place = _current_expected_place()

        self._scope = core.Scope()
        for p in parameters:
1288
            src_tensor = p.value().get_tensor()
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
            dst_tensor = self._scope.var(p.name).get_tensor()
            dst_tensor._share_data_with(src_tensor)

        self._exe = Executor(self._place)
        self._compiled_program = None
        self._build_strategy = None
        self._exec_strategy = None

    @property
    def program(self):
        return self._program

    def _switch(self, is_test=True):
        for block_id in range(self._program.num_blocks):
            block = self._program.block(block_id)
            for op in block.ops:
                if op.has_attr("is_test"):
                    op._set_attr("is_test", is_test)

    @staticmethod
    @dygraph_only
    def trace(layer, inputs):
        """
1312
        This method is the only allowed method to create TracedLayer object.
1313 1314 1315 1316
        It would call the :code:`layer(*inputs)` method to run the dygraph
        model and convert it into a static graph model.

        Args:
1317
            layer (dygraph.Layer): the layer object to be traced.
1318 1319
            inputs (list(Tensor)|tuple(Tensor)|Tensor): the input tensors of
                the layer object.
1320 1321

        Returns:
1322
            tuple: A tuple of 2 items, whose the first item is the output of
1323 1324
                :code:`layer(*inputs)` , and the second item is the created
                TracedLayer object.
1325

1326
        Examples:
1327 1328 1329
            .. code-block:: python:

                import paddle.fluid as fluid
1330
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1331 1332 1333
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1334 1335 1336
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1337 1338 1339 1340 1341

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1342
                    layer = ExampleLayer()
1343 1344 1345
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1346 1347 1348 1349 1350 1351 1352 1353 1354

                    # run the static graph model using Executor inside
                    out_static_graph = static_layer([in_var])

                    print(len(out_static_graph)) # 1
                    print(out_static_graph[0].shape) # (2, 10)

                    # save the static graph model for inference
                    static_layer.save_inference_model(dirname='./saved_infer_model')
1355
        """
1356 1357 1358 1359
        assert isinstance(
            layer, Layer
        ), "The type of 'layer' in fluid.dygraph.jit.TracedLayer.trace must be fluid.dygraph.Layer, but received {}.".format(
            type(layer))
1360 1361
        outs, prog, feed, fetch, parameters = _trace(layer, inputs)
        traced = TracedLayer(prog, parameters, feed, fetch)
1362 1363 1364 1365 1366 1367 1368
        return outs, traced

    def set_strategy(self, build_strategy=None, exec_strategy=None):
        """
        Set the strategies when running static graph model.

        Args:
1369
            build_strategy (BuildStrategy, optional): build strategy of
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
                :code:`CompiledProgram` inside TracedLayer. Default None.
            exec_strategy (ExecutionStrategy, optional): execution strategy of
                :code:`CompiledProgram` inside TracedLayer. Default None.

        Returns:
            None

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1381
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1382 1383 1384
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1385 1386 1387
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1388 1389 1390 1391 1392

                    def forward(self, input):
                        return self._fc(input)

                with fluid.dygraph.guard():
1393
                    layer = ExampleLayer()
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
                    in_np = np.random.random([2, 3]).astype('float32')
                    in_var = to_variable(in_np)

                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])

                    build_strategy = fluid.BuildStrategy()
                    build_strategy.enable_inplace = True

                    exec_strategy = fluid.ExecutionStrategy()
                    exec_strategy.num_threads = 2

                    static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy)
                    out_static_graph = static_layer([in_var])
        """
        assert self._compiled_program is None, "Cannot set strategy after run"
1409 1410 1411 1412 1413 1414 1415 1416
        assert isinstance(
            build_strategy, (type(None), BuildStrategy)
        ), "The type of 'build_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.BuildStrategy, but received {}.".format(
            type(build_strategy))
        assert isinstance(
            exec_strategy, (type(None), ExecutionStrategy)
        ), "The type of 'exec_strategy' in fluid.dygraph.jit.TracedLayer.set_strategy must be fluid.ExecutionStrategy, but received {}.".format(
            type(exec_strategy))
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy

    @switch_to_static_graph
    def _compile(self):
        self._compiled_program = CompiledProgram(
            self._program).with_data_parallel(
                build_strategy=self._build_strategy,
                exec_strategy=self._exec_strategy,
                places=self._place)

    def _build_feed(self, inputs):
        assert isinstance(inputs, (list, tuple)), \
            "Inputs should be a list or tuple of variables"
        assert len(inputs) == len(self._feed_names)
        feed_dict = {}
        if in_dygraph_mode():
            for x, name in zip(inputs, self._feed_names):
1435
                feed_dict[name] = x.value().get_tensor()
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
        else:
            for x, name in zip(inputs, self._feed_names):
                feed_dict[name] = x

        return feed_dict

    @switch_to_static_graph
    def _run(self, feed):
        return self._exe.run(self._compiled_program,
                             feed=feed,
                             fetch_list=self._fetch_names)

    def __call__(self, inputs):
        with scope_guard(self._scope):
            if self._compiled_program is None:
                self._compile()

            return self._run(self._build_feed(inputs))

    @switch_to_static_graph
    def save_inference_model(self, dirname, feed=None, fetch=None):
        """
1458 1459
        Save the TracedLayer to a model for inference. The saved
        inference model can be loaded by C++ inference APIs.
1460 1461

        Args:
1462
            dirname (str): the directory to save the inference model.
1463
            feed (list[int], optional): the input variable indices of the saved
1464
                inference model. If None, all input variables of the
1465 1466 1467 1468 1469 1470 1471 1472
                TracedLayer object would be the inputs of the saved inference
                model. Default None.
            fetch (list[int], optional): the output variable indices of the
                saved inference model. If None, all output variables of the
                TracedLayer object would be the outputs of the saved inference
                model. Default None.

        Returns:
1473
            None
1474 1475 1476 1477 1478

        Examples:
            .. code-block:: python:

                import paddle.fluid as fluid
1479
                from paddle.fluid.dygraph import Linear, to_variable, TracedLayer
1480 1481 1482
                import numpy as np

                class ExampleLayer(fluid.dygraph.Layer):
1483 1484 1485
                    def __init__(self):
                        super(ExampleLayer, self).__init__()
                        self._fc = Linear(3, 10)
1486 1487 1488 1489

                    def forward(self, input):
                        return self._fc(input)

1490 1491 1492
                save_dirname = './saved_infer_model'
                in_np = np.random.random([2, 3]).astype('float32')

1493
                with fluid.dygraph.guard():
1494
                    layer = ExampleLayer()
1495 1496
                    in_var = to_variable(in_np)
                    out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var])
1497
                    static_layer.save_inference_model(save_dirname, feed=[0], fetch=[0])
1498 1499

                place = fluid.CPUPlace()
1500 1501
                exe = fluid.Executor(place)
                program, feed_vars, fetch_vars = fluid.io.load_inference_model(save_dirname,
1502
                                                    exe)
1503 1504 1505

                fetch, = exe.run(program, feed={feed_vars[0]: in_np}, fetch_list=fetch_vars)
                print(fetch.shape) # (2, 10)
1506
        """
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        check_type(dirname, "dirname", str,
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(feed, "feed", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(feed, list):
            for f in feed:
                check_type(f, "each element of feed", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")
        check_type(fetch, "fetch", (type(None), list),
                   "fluid.dygraph.jit.TracedLayer.save_inference_model")
        if isinstance(fetch, list):
            for f in fetch:
                check_type(f, "each element of fetch", int,
                           "fluid.dygraph.jit.TracedLayer.save_inference_model")

1522
        from paddle.fluid.io import save_inference_model
1523 1524 1525 1526 1527

        def get_feed_fetch(all_vars, partial_vars):
            if partial_vars is None:
                return all_vars

1528
            return [all_vars[idx] for idx in partial_vars]
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538

        with scope_guard(self._scope):
            feeded_var_names = get_feed_fetch(self._feed_names, feed)
            target_var_names = get_feed_fetch(self._fetch_names, fetch)
            target_vars = []
            for name in target_var_names:
                target_var = self._program.global_block().vars.get(name, None)
                assert target_var is not None, "{} cannot be found".format(name)
                target_vars.append(target_var)

1539
            save_inference_model(
1540 1541 1542 1543 1544
                dirname=dirname,
                feeded_var_names=feeded_var_names,
                target_vars=target_vars,
                executor=self._exe,
                main_program=self._program.clone())