build_strategy.cc 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

D
dzhwinter 已提交
17 18
#include <glog/logging.h>
#include <memory>
19
#include <unordered_set>
Q
Qiao Longfei 已提交
20
#include <utility>
21
#include "paddle/fluid/framework/details/reduce_op_handle.h"
22
#include "paddle/fluid/framework/ir/graph.h"
D
dzhwinter 已提交
23
#include "paddle/fluid/framework/ir/graph_helper.h"
C
chengduo 已提交
24
#include "paddle/fluid/framework/ir/graph_printer.h"
W
WangZhen 已提交
25
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
26
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
27
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
28

29
DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
31

32 33 34 35
namespace paddle {
namespace framework {
namespace details {

36
static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
Y
Yancey1989 已提交
37 38
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
Y
Yancey1989 已提交
39
  // NOTE: ParallelGraph would execute this pass on each graph, so
Y
Yancey1989 已提交
40
  // don't need to append it here.
Y
Yancey1989 已提交
41
  return (!strategy.enable_sequential_execution_ &&
Y
Yancey1989 已提交
42 43
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
44 45
}

C
chengduo 已提交
46 47 48 49 50 51
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

52 53 54 55
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
C
chengduo 已提交
56
    ResolveOptionConfliction();
C
chengduo 已提交
57

C
chengduo 已提交
58 59 60 61 62
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");

63 64
    AppendPassToUseNgraph("ngraph_subgraph_pass");

C
chengduo 已提交
65 66
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
67

C
chengduo 已提交
68
    AppendMultiDevPass();
69
    AppendSetReaderDeviceCountPass();
C
chengduo 已提交
70 71 72 73 74 75 76 77 78 79 80 81
    AppendMultiGraphOptPasses();

    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
Z
Zeng Jinle 已提交
82

C
chengduo 已提交
83 84
    SetCollectiveContext();
  }
85

C
chengduo 已提交
86 87 88
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
C
chengduo 已提交
89
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
90
          << "Currently, fuse_all_optimizer_ops doesn't work under "
C
chengduo 已提交
91 92
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
93
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
94 95 96
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
S
sneaxiy 已提交
97
    }
C
chengduo 已提交
98
    if (strategy_.is_distribution_) {
C
chengduo 已提交
99
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
100 101 102
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
103
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
104 105 106
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
Q
qingqing01 已提交
107
    }
C
chengduo 已提交
108
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
C
chengduo 已提交
109
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
C
chengduo 已提交
110 111 112
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_optimizer_ops_ = false;
C
chengduo 已提交
113
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
114 115
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
C
chengduo 已提交
116
      strategy_.fuse_all_reduce_ops_ = false;
D
dzhwinter 已提交
117
    }
C
chengduo 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
    }

    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);

    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
131 132
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
133 134 135 136
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
    }
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
137 138
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
C
chengduo 已提交
139
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
140
    }
C
chengduo 已提交
141
  }
142

C
chengduo 已提交
143 144 145 146 147 148
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
S
sneaxiy 已提交
149

C
chengduo 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");

    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
        !strategy_.is_distribution_ &&
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
C
chengduo 已提交
165

C
chengduo 已提交
166 167 168
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
169 170 171 172
    AppendPassWithCheck(strategy_.fuse_bn_act_ops_, "fuse_bn_act_pass");
#ifdef PADDLE_WITH_CUDA
    AppendPassWithCheck(strategy_.enable_auto_fusion_, "fusion_group_pass");
#endif
C
chengduo 已提交
173 174
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
C
chengduo 已提交
175
    // for single card training, fuse_all_reduce_ops is unnecessary.
176
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
C
chengduo 已提交
177 178
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
179
    // Fuse all the optimization operators.
C
chengduo 已提交
180 181 182
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
C
chengduo 已提交
183
    if (strategy_.fuse_all_optimizer_ops_ == true) {
184 185 186
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
C
chengduo 已提交
187
    }
C
chengduo 已提交
188
  }
C
chengduo 已提交
189

C
chengduo 已提交
190 191 192 193 194 195 196 197 198
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
S
sneaxiy 已提交
199
    }
C
chengduo 已提交
200
    VLOG(1) << "CollectiveContext:" << context->String();
201 202
  }

203
  // Convert graph to run on multi-devices.
C
chengduo 已提交
204
  void AppendMultiDevPass() {
C
chengduo 已提交
205
    ir::Pass *multi_devices_pass = nullptr;
Q
Qiao Longfei 已提交
206 207 208
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
209 210
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
C
chengduo 已提交
211 212 213 214 215 216 217 218 219 220 221
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
222 223 224 225 226 227
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

228 229 230 231
  void AppendSetReaderDeviceCountPass() {
    AppendPass("set_reader_device_count_pass");
  }

C
chengduo 已提交
232 233 234 235 236 237 238 239 240 241 242
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

C
chengduo 已提交
243 244 245 246 247
  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

C
chengduo 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

272 273 274 275 276 277 278 279 280 281 282 283
  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
284 285
                      platform::errors::PreconditionNotMet(
                          "Please compile with NGRAPH first to use NGRAPH"));
286 287 288
#endif
  }

289 290 291 292
 private:
  BuildStrategy strategy_;
};

293
std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
X
Xin Pan 已提交
294 295
    bool finalize_strategy) const {
  if (is_finalized_) {
296 297
    return pass_builder_;
  }
298
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
X
Xin Pan 已提交
299 300
  if (finalize_strategy) {
    is_finalized_ = true;
301
  }
X
fix  
Xin Pan 已提交
302
  return pass_builder_;
303 304
}

305
bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
306
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
307 308
}

309 310 311 312 313
ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
P
peizhilin 已提交
314
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
315 316
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
317
#else
318
                                const bool use_cuda) const {
319
#endif
C
chengduo 已提交
320
  VLOG(1) << "apply all passes";
321 322
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);
X
fix  
Xin Pan 已提交
323 324

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
C
chengduo 已提交
325
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
326 327 328
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
329 330
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
331 332
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
X
fix  
Xin Pan 已提交
333
                                                    &local_scopes);
334 335
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
Y
Yancey1989 已提交
336

P
peizhilin 已提交
337
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
338
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
C
chengduo 已提交
339
      pass->Erase(kNCCLCtxs);
340
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
341
#endif
C
chengduo 已提交
342
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
343 344
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
C
chengduo 已提交
345 346 347 348 349 350
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
C
chengduo 已提交
351 352 353 354 355 356
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
357
#endif
358
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
359 360
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
S
sneaxiy 已提交
361
    } else if (pass->Type() == "sequential_execution_pass") {
362 363
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
364
    } else if (pass->Type() == "all_reduce_deps_pass") {
365
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
366
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
367
      pass->Erase(kNCCLCtxs);
368
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
369 370 371 372
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
373 374
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
375 376 377 378 379 380
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
381 382 383 384 385 386
    } else if (pass->Type() == "fusion_group_pass") {
      pass->Set<bool>("use_gpu", new bool(use_cuda));
      if (!use_cuda) {
        LOG(WARNING) << "fusion_group_pass is only supported on GPU, skipped.";
        continue;
      }
Z
Zhen Wang 已提交
387 388 389 390 391 392
    } else if (pass->Type() == "fuse_bn_act_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_bn_act_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
393 394 395
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
396 397 398 399 400 401
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
402
    } else if (pass->Type() == "set_reader_device_count_pass") {
S
sneaxiy 已提交
403
      pass->Erase(kPlaces);
404
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
405 406 407
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
X
fix  
Xin Pan 已提交
408
    }
C
chengduo 已提交
409
    VLOG(1) << "Start Apply Pass " << pass->Type();
410
    graph = pass->Apply(graph);
C
chengduo 已提交
411
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
fix  
Xin Pan 已提交
412
  }
C
chengduo 已提交
413
  VLOG(1) << "All Passes Applied";
414 415
  return graph;
}
D
dzhwinter 已提交
416

417 418 419 420
}  // namespace details
}  // namespace framework
}  // namespace paddle

Q
qingqing01 已提交
421
USE_PASS(sync_batch_norm_pass);
422
USE_PASS(fuse_relu_depthwise_conv_pass);
423
USE_PASS(fuse_elewise_add_act_pass);
Z
Zhen Wang 已提交
424
USE_PASS(fuse_bn_act_pass);
425
USE_PASS(graph_viz_pass);
426
USE_PASS(multi_batch_merge_pass);
427
USE_PASS(reduce_mode_multi_devices_pass);
C
chengduo 已提交
428
USE_PASS(all_reduce_mode_multi_devices_pass);
429
USE_PASS(dist_multi_devices_pass);
430 431
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
S
sneaxiy 已提交
432
USE_PASS(sequential_execution_pass);
433
USE_PASS(all_reduce_deps_pass);
434
USE_PASS(backward_optimizer_op_deps_pass);
S
sneaxiy 已提交
435
USE_PASS(modify_op_lock_and_record_event_pass);
M
minqiyang 已提交
436
USE_PASS(lock_free_optimize_pass);
437
USE_PASS(coalesce_grad_tensor_pass);
W
WangZhen 已提交
438
USE_PASS(graph_to_program_pass);
C
chengduo 已提交
439 440
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
C
chengduo 已提交
441
USE_PASS(fuse_momentum_op_pass);
C
chengduo 已提交
442
USE_PASS(fuse_all_reduce_op_pass);
443
USE_PASS(runtime_context_cache_pass);
444
USE_PASS(set_reader_device_count_pass);
445 446 447
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
448 449 450
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif
451 452 453
#ifdef PADDLE_WITH_CUDA
USE_PASS(fusion_group_pass);
#endif