infershape_utils.cc 27.9 KB
Newer Older
C
Chen Weihang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/infershape_utils.h"

17
#include <algorithm>
18 19
#include <string>

20
#include "paddle/fluid/framework/convert_utils.h"
C
Chen Weihang 已提交
21
#include "paddle/fluid/framework/framework.pb.h"
22
#include "paddle/fluid/framework/phi_utils.h"
C
Chen Weihang 已提交
23
#include "paddle/fluid/platform/enforce.h"
24
#include "paddle/phi/common/int_array.h"
25
#include "paddle/phi/common/scalar.h"
26 27 28 29 30
#include "paddle/phi/core/compat/arg_map_context.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/infermeta_utils.h"
31
#include "paddle/phi/core/kernel_factory.h"
32
#include "paddle/phi/core/tensor_utils.h"
C
Chen Weihang 已提交
33 34 35 36

namespace paddle {
namespace framework {

37
class InferShapeArgumentMappingContext : public phi::ArgumentMappingContext {
C
Chen Weihang 已提交
38 39 40 41 42 43 44 45 46 47 48 49
 public:
  explicit InferShapeArgumentMappingContext(const InferShapeContext& ctx)
      : ctx_(ctx) {}

  bool HasInput(const std::string& name) const override {
    return ctx_.HasInput(name);
  }

  bool HasOutput(const std::string& name) const override {
    return ctx_.HasOutput(name);
  }

50 51 52 53
  bool HasAttr(const std::string& name) const override {
    return ctx_.HasAttr(name);
  }

C
Chen Weihang 已提交
54
  paddle::any Attr(const std::string& name) const override {
55 56 57 58 59
    auto* attr = ctx_.Attrs().GetAttr(name);
    PADDLE_ENFORCE_NOT_NULL(
        attr, platform::errors::NotFound(
                  "Attribute (%s) should be in AttributeMap.", name));
    return GetAttrValue(*attr);
C
Chen Weihang 已提交
60 61 62
  }

  size_t InputSize(const std::string& name) const override {
63 64 65 66 67 68
    if (ctx_.HasInputs(name)) {
      return ctx_.Inputs(name).size();
    } else if (ctx_.HasInput(name)) {
      return 1;
    }
    return 0;
C
Chen Weihang 已提交
69 70 71 72 73 74 75
  }

  size_t OutputSize(const std::string& name) const override {
    return ctx_.Outputs(name).size();
  }

  bool IsDenseTensorInput(const std::string& name) const override {
76 77 78 79 80
    auto var_type = ctx_.GetInputVarType(name);
    return var_type == proto::VarType::LOD_TENSOR;
  }

  bool IsDenseTensorInputs(const std::string& name) const override {
C
Chen Weihang 已提交
81
    auto var_types = ctx_.GetInputsVarType(name);
82 83 84 85
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
C
Chen Weihang 已提交
86 87 88
  }

  bool IsSelectedRowsInput(const std::string& name) const override {
89 90
    auto var_type = ctx_.GetInputVarType(name);
    return var_type == proto::VarType::SELECTED_ROWS;
C
Chen Weihang 已提交
91 92
  }

93 94
  bool IsDenseTensorVectorInput(const std::string& name) const override {
    auto var_types = ctx_.GetInputsVarType(name);
95 96 97 98
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR_ARRAY;
                       });
99 100
  }

101 102
  bool IsDenseTensorOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
103 104 105 106
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::LOD_TENSOR;
                       });
107 108 109 110
  }

  bool IsSelectedRowsOutput(const std::string& name) const override {
    auto var_types = ctx_.GetOutputsVarType(name);
111 112 113 114
    return std::all_of(var_types.begin(), var_types.end(),
                       [](const proto::VarType::Type& type) {
                         return type == proto::VarType::SELECTED_ROWS;
                       });
115 116
  }

117 118
  bool IsForInferShape() const override { return true; }

119 120
  bool IsRuntime() const override { return ctx_.IsRuntime(); }

C
Chen Weihang 已提交
121 122 123 124
 private:
  const InferShapeContext& ctx_;
};

125 126 127 128 129 130 131
int64_t CompatMetaTensor::numel() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    return var->Get<Tensor>().numel();
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return var->ElementSize();
C
Chen Weihang 已提交
132
  }
133
}
C
Chen Weihang 已提交
134

135 136 137 138 139 140 141 142 143 144 145
DDim CompatMetaTensor::dims() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dims();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dims();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // use tensor array size as dims
      auto& tensor_array = var->Get<framework::LoDTensorArray>();
      return phi::make_ddim({static_cast<int64_t>(tensor_array.size())});
C
Chen Weihang 已提交
146
    } else {
147 148 149
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dims from DenseTensor or SelectedRows or "
          "DenseTensorArray."));
C
Chen Weihang 已提交
150
    }
151 152 153 154 155
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);

    return var->GetShape().empty() ? phi::make_ddim({0UL})
                                   : phi::make_ddim(var->GetShape());
C
Chen Weihang 已提交
156
  }
157
}
C
Chen Weihang 已提交
158

159 160 161 162 163 164 165 166 167 168 169
phi::DataType CompatMetaTensor::dtype() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().dtype();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().dtype();
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported get dtype from LoDTensorArray now
      return phi::DataType::UNDEFINED;
C
Chen Weihang 已提交
170
    } else {
171 172
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
173
    }
174 175 176
  } else {
    auto* var = BOOST_GET_CONST(VarDesc*, var_);
    return paddle::framework::TransToPhiDataType(var->GetDataType());
C
Chen Weihang 已提交
177
  }
178
}
C
Chen Weihang 已提交
179

180 181 182 183 184 185 186 187
DataLayout CompatMetaTensor::layout() const {
  if (is_runtime_) {
    auto* var = BOOST_GET_CONST(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      return var->Get<phi::DenseTensor>().layout();
    } else if (var->IsType<phi::SelectedRows>()) {
      return var->Get<phi::SelectedRows>().layout();
    } else if (var->IsType<framework::LoDTensorArray>()) {
188
      // NOTE(chenweihang): do nothing
189 190 191 192 193 194
      // Unsupported get layout from LoDTensorArray now
      return phi::DataLayout::UNDEFINED;
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can get layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
195
    }
196 197 198 199
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported get layout for VarDesc now
    return DataLayout::UNDEFINED;
C
Chen Weihang 已提交
200
  }
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}

void CompatMetaTensor::set_dims(const DDim& dims) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dims = dims;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      auto* tensor_array = var->GetMutable<framework::LoDTensorArray>();
      // Note: Here I want enforce `tensor_array->size() == 0UL`, because
      // inplace using on LoDTensorArray is dangerous, but the unittest
      // `test_list` contains this behavior
      PADDLE_ENFORCE_EQ(dims.size(), 1UL,
                        platform::errors::InvalidArgument(
                            "LoDTensorArray can only have one dimension."));
      // only set the array size for LoDTensorArray input
      tensor_array->resize(dims[0]);
C
Chen Weihang 已提交
222
    } else {
223 224
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dims from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
225
    }
226 227 228
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetShape(vectorize(dims));
C
Chen Weihang 已提交
229
  }
230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

void CompatMetaTensor::set_dtype(phi::DataType dtype) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->dtype = dtype;
    } else if (var->IsType<framework::LoDTensorArray>()) {
      // NOTE(chenweihang): do nothing
      // Unsupported set dtype for LoDTensorArray now
C
Chen Weihang 已提交
244
    } else {
245 246
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set dtype from DenseTensor or SelectedRows."));
C
Chen Weihang 已提交
247
    }
248 249 250
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetDataType(paddle::framework::TransToProtoVarType(dtype));
C
Chen Weihang 已提交
251
  }
252 253 254 255 256 257 258 259 260 261 262 263
}

void CompatMetaTensor::set_layout(DataLayout layout) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<phi::SelectedRows>()) {
      auto* tensor = var->GetMutable<phi::SelectedRows>()->mutable_value();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->layout = layout;
    } else if (var->IsType<framework::LoDTensorArray>()) {
264
      // NOTE(chenweihang): do nothing
265 266 267 268 269
      // Unsupported set dtype for LoDTensorArray now
    } else {
      PADDLE_THROW(platform::errors::Unimplemented(
          "Currently, only can set layout from DenseTensor or "
          "SelectedRows."));
C
Chen Weihang 已提交
270
    }
271 272 273
  } else {
    // NOTE(chenweihang): do nothing
    // Unsupported set layout for VarDesc now
C
Chen Weihang 已提交
274
  }
275 276 277 278 279 280 281 282 283
}

void CompatMetaTensor::share_lod(const MetaTensor& meta_tensor) {
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::DenseTensor>()) {
      auto* tensor = var->GetMutable<phi::DenseTensor>();
      phi::DenseTensorUtils::GetMutableMeta(tensor)->lod =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetRuntimeLoD();
C
Chen Weihang 已提交
284
    } else {
285 286
      // NOTE(chenweihang): do nothing
      // only LoDTensor need to share lod
C
Chen Weihang 已提交
287
    }
288 289 290 291
  } else {
    auto* var = BOOST_GET(VarDesc*, var_);
    var->SetLoDLevel(
        static_cast<const CompatMetaTensor&>(meta_tensor).GetCompileTimeLoD());
C
Chen Weihang 已提交
292
  }
293 294 295 296 297 298 299 300 301 302 303 304
}

void CompatMetaTensor::share_dims(const MetaTensor& meta_tensor) {
  set_dims(meta_tensor.dims());
  if (is_runtime_) {
    auto* var = BOOST_GET(Variable*, var_);
    if (var->IsType<phi::SelectedRows>()) {
      auto* selected_rows = var->GetMutable<phi::SelectedRows>();
      auto& input_selected_rows =
          static_cast<const CompatMetaTensor&>(meta_tensor).GetSelectedRows();
      selected_rows->set_rows(input_selected_rows.rows());
      selected_rows->set_height(input_selected_rows.height());
305
    }
306
  }
307 308 309 310 311 312 313 314 315
}

void CompatMetaTensor::share_meta(const MetaTensor& meta_tensor) {
  share_dims(meta_tensor);
  set_dtype(meta_tensor.dtype());
  set_layout(meta_tensor.layout());
  // special case: share lod of LoDTensor
  share_lod(meta_tensor);
}
C
Chen Weihang 已提交
316

317 318 319 320 321 322 323 324 325 326 327 328
void CompatInferMetaContext::EmplaceBackInput(CompatMetaTensor input) {
  int index = compat_inputs_.size();
  compat_inputs_.emplace_back(std::move(input));
  input_range_.emplace_back(std::pair<int, int>(index, index + 1));
}
void CompatInferMetaContext::EmplaceBackOutput(CompatMetaTensor output) {
  int index = compat_outputs_.size();
  compat_outputs_.emplace_back(std::move(output));
  output_range_.emplace_back(std::pair<int, int>(index, index + 1));
}

void CompatInferMetaContext::EmplaceBackInputs(
C
Chen Weihang 已提交
329
    paddle::small_vector<CompatMetaTensor, phi::kInputSmallVectorSize> inputs) {
330 331 332 333 334 335 336 337
  int index = compat_inputs_.size();
  input_range_.emplace_back(std::pair<int, int>(index, index + inputs.size()));
  compat_inputs_.insert(compat_inputs_.end(),
                        std::make_move_iterator(inputs.begin()),
                        std::make_move_iterator(inputs.end()));
}

void CompatInferMetaContext::EmplaceBackOutputs(
C
Chen Weihang 已提交
338
    paddle::small_vector<CompatMetaTensor, phi::kOutputSmallVectorSize>
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
        outputs) {
  int index = compat_outputs_.size();
  output_range_.emplace_back(
      std::pair<int, int>(index, index + outputs.size()));
  compat_outputs_.insert(compat_outputs_.end(),
                         std::make_move_iterator(outputs.begin()),
                         std::make_move_iterator(outputs.end()));
}

const phi::MetaTensor& CompatInferMetaContext::InputAt(size_t idx) const {
  return compat_inputs_.at(idx);
}

std::vector<const phi::MetaTensor*> CompatInferMetaContext::InputsBetween(
    size_t start, size_t end) const {
  std::vector<const phi::MetaTensor*> result;
  result.reserve(end - start);

  for (size_t i = start; i < end; ++i) {
    auto& in = compat_inputs_.at(i);
    result.emplace_back(in.initialized() ? &in : nullptr);
  }

  return result;
}

365
paddle::optional<std::vector<const phi::MetaTensor*>>
366 367 368 369 370 371 372 373 374 375 376 377
CompatInferMetaContext::OptionalInputsBetween(size_t start, size_t end) const {
  const auto& first = compat_inputs_.at(start);

  if (first.initialized()) {
    std::vector<const phi::MetaTensor*> result;
    result.reserve(end - start);

    for (size_t i = start; i < end; ++i) {
      auto& in = compat_inputs_.at(i);
      result.emplace_back(in.initialized() ? &in : nullptr);
    }

378 379
    return paddle::optional<std::vector<const phi::MetaTensor*>>(
        std::move(result));
380
  }
381
  return paddle::none;
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
}

phi::MetaTensor* CompatInferMetaContext::MutableOutputAt(size_t idx) {
  auto& out = compat_outputs_.at(idx);
  return out.initialized() ? &out : nullptr;
}

std::vector<phi::MetaTensor*> CompatInferMetaContext::MutableOutputBetween(
    size_t start, size_t end) {
  std::vector<phi::MetaTensor*> result;
  result.reserve(end - start);
  for (size_t i = start; i < end; ++i) {
    auto& out = compat_outputs_.at(i);
    result.emplace_back(out.initialized() ? &out : nullptr);
  }
  return result;
}

CompatInferMetaContext BuildInferMetaContext(InferShapeContext* ctx,
                                             const std::string& op_type) {
402
  // 1. get kernel args
403
  auto* arg_map_fn = ctx->GetPhiArgumentMappingFn();
404
  InferShapeArgumentMappingContext arg_map_context(*ctx);
405 406 407
  phi::KernelSignature signature = arg_map_fn
                                       ? (*arg_map_fn)(arg_map_context)
                                       : *ctx->GetPhiDefaultKernelSignature();
408 409 410
  VLOG(3) << "BuildInferMetaContext: op kernel signature - " << signature;

  // 2. build infermeta context
411
  CompatInferMetaContext infer_meta_context(
F
From00 已提交
412
      {ctx->IsRuntime(), ctx->IsRunMKLDNNKernel()});
413

414 415 416
  const auto& input_names = signature.input_names;
  const auto& attr_names = signature.attr_names;
  const auto& output_names = signature.output_names;
417

418 419 420
  const auto& args_def =
      phi::KernelFactory::Instance().GetFirstKernelArgsDef(signature.name);
  const auto& attr_defs = args_def.attribute_defs();
421

422
  for (auto& in_name : input_names) {
423
    if (ctx->HasInputs(in_name)) {
424
      auto input_var = std::move(ctx->GetInputVarPtrs(in_name));
425 426
      if (input_var.size() == 1) {
        infer_meta_context.EmplaceBackInput(
427
            std::move(CompatMetaTensor(input_var[0], ctx->IsRuntime())));
428
      } else {
C
Chen Weihang 已提交
429
        paddle::small_vector<CompatMetaTensor, phi::kInputSmallVectorSize>
430
            inputs;
431
        for (const auto& in : input_var) {
432 433
          inputs.emplace_back(
              std::move(CompatMetaTensor(in, ctx->IsRuntime())));
434 435 436
        }
        infer_meta_context.EmplaceBackInputs(std::move(inputs));
      }
437
    } else {
438 439
      infer_meta_context.EmplaceBackInput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
440
    }
441
  }
442

443 444
  VLOG(6) << "BuildInferMetaContext: Done inputs";

445
  auto attr_reader = ctx->Attrs();
446
  for (size_t i = 0; i < attr_names.size(); ++i) {
447
    auto& attr_name = attr_names[i];
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
    VLOG(6) << "BuildInferMetaContext: " << attr_name << ": "
            << attr_defs[i].type_index;
    auto* attr_ptr = attr_reader.GetAttr(attr_name);
    switch (attr_defs[i].type_index) {
      case phi::AttributeType::SCALAR:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::FLOAT:
              infer_meta_context.EmplaceBackAttr(
                  phi::Scalar(BOOST_GET_CONST(float, attr)));
              break;
            case framework::proto::AttrType::INT:
              infer_meta_context.EmplaceBackAttr(
                  phi::Scalar(BOOST_GET_CONST(int, attr)));
              break;
            case framework::proto::AttrType::STRING:
              infer_meta_context.EmplaceBackAttr(
                  phi::Scalar(BOOST_GET_CONST(std::string, attr)));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to Scalar when construct "
                  "InferMetaContext.",
                  attr_name));
473
          }
474 475 476 477 478 479 480 481 482 483 484 485
        } else if (ctx->HasInput(attr_name)) {
          auto infershape_input = std::move(ctx->GetInputVarPtrs(attr_name));
          if (infershape_input.size() == 1) {
            if (ctx->IsRuntime()) {
              Variable* var = BOOST_GET_CONST(Variable*, infershape_input[0]);
              infer_meta_context.EmplaceBackAttr(
                  std::move(experimental::MakePhiScalarFromVar(*var)));
            } else {
              phi::Scalar tensor_scalar(-1);
              tensor_scalar.SetFromTensor(true);
              infer_meta_context.EmplaceBackAttr(std::move(tensor_scalar));
            }
486
          } else {
487 488 489 490
            PADDLE_THROW(platform::errors::InvalidArgument(
                "Invalid input.size() when cast op attribute `%s` to Scalar, "
                "expected 1, but actually is %d .",
                attr_name, infershape_input.size()));
491 492
          }
        } else {
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
          // do nothing, skip current attr
        }
        break;
      case phi::AttributeType::INT_ARRAY:
        // When attr is a vector_tensor or tensor, transform it to IntArray
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS:
              infer_meta_context.EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int32_t>, attr))));
              break;
            case framework::proto::AttrType::LONGS:
              infer_meta_context.EmplaceBackAttr(std::move(
                  phi::IntArray(BOOST_GET_CONST(std::vector<int64_t>, attr))));
              break;
            case framework::proto::AttrType::INT:
              infer_meta_context.EmplaceBackAttr(
                  phi::IntArray({BOOST_GET_CONST(int, attr)}));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to IntArray when "
                  "construct InferMetaContext.",
                  attr_name));
518
          }
519 520 521 522 523 524 525 526 527
        } else if (ctx->HasInputs(attr_name) || ctx->HasInput(attr_name)) {
          auto infershape_inputs = std::move(ctx->GetInputVarPtrs(attr_name));
          if (ctx->IsRuntime()) {
            // If is in runtime, we will get tensor's value for IntArray
            // and push it into attrs
            std::vector<Variable*> vars;
            vars.reserve(infershape_inputs.size());
            for (size_t i = 0; i < infershape_inputs.size(); i++) {
              vars.push_back(BOOST_GET_CONST(Variable*, infershape_inputs[i]));
528
            }
529 530 531 532 533 534
            if (infershape_inputs.size() != 1) {
              infer_meta_context.EmplaceBackAttr(
                  std::move(experimental::MakePhiIntArrayFromVarList(vars)));
            } else {
              infer_meta_context.EmplaceBackAttr(
                  std::move(experimental::MakePhiIntArrayFromVar(*vars[0])));
535
            }
536
          } else {
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            // If is not in runtime, we will set default value(-1) for IntArray
            std::vector<VarDesc*> vars;
            vars.reserve(infershape_inputs.size());
            for (size_t i = 0; i < infershape_inputs.size(); ++i) {
              vars.push_back(BOOST_GET_CONST(VarDesc*, infershape_inputs[i]));
            }

            int64_t num_ele = 0;
            if (vars.size() == 1) {
              num_ele = 1;
              const auto& tensor_dims = vars[0]->GetShape();
              for (size_t i = 0; i < tensor_dims.size(); ++i) {
                num_ele *= tensor_dims[i];
              }

              if (num_ele <= 0) {
553
                num_ele = tensor_dims.size();
554 555 556 557 558 559 560 561
              }

            } else {
              num_ele = vars.size();
            }
            phi::IntArray tensor_attr(std::vector<int32_t>(num_ele, -1));
            tensor_attr.SetFromTensor(true);
            infer_meta_context.EmplaceBackAttr(std::move(tensor_attr));
562 563
          }
        } else {
564
          // do nothing, skip current attr
565
        }
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        break;
      case phi::AttributeType::SCALARS:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (AttrTypeID(attr)) {
            case framework::proto::AttrType::INTS: {
              const auto& vec = BOOST_GET_CONST(std::vector<int32_t>, attr);
              std::vector<phi::Scalar> scalar_list;
              scalar_list.reserve(vec.size());
              for (const auto& val : vec) {
                scalar_list.emplace_back(val);
              }
              infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
            } break;
            case framework::proto::AttrType::LONGS: {
              const auto& vec = BOOST_GET_CONST(std::vector<int64_t>, attr);
              std::vector<phi::Scalar> scalar_list;
              scalar_list.reserve(vec.size());
              for (const auto& val : vec) {
                scalar_list.emplace_back(val);
              }
              infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
            } break;
            case framework::proto::AttrType::FLOATS: {
              const auto& vec = BOOST_GET_CONST(std::vector<float>, attr);
              std::vector<phi::Scalar> scalar_list;
              scalar_list.reserve(vec.size());
              for (const auto& val : vec) {
                scalar_list.emplace_back(val);
              }
              infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
            } break;
            case framework::proto::AttrType::FLOAT64S: {
              const auto& vec = BOOST_GET_CONST(std::vector<double>, attr);
              std::vector<phi::Scalar> scalar_list;
              scalar_list.reserve(vec.size());
              for (const auto& val : vec) {
                scalar_list.emplace_back(val);
              }
              infer_meta_context.EmplaceBackAttr(std::move(scalar_list));
            } break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` to vector<Scalar> when "
                  "construct KernelContext.",
                  attr_names[i]));
612 613
          }
        } else {
614
          // do nothing, skip current attr
615
        }
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        break;
      default:
        if (attr_ptr) {
          auto& attr = *attr_ptr;
          switch (attr_defs[i].type_index) {
            case phi::AttributeType::FLOAT32:
              infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(float, attr));
              break;
            case phi::AttributeType::INT32:
              infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(int, attr));
              break;
            case phi::AttributeType::BOOL:
              infer_meta_context.EmplaceBackAttr(BOOST_GET_CONST(bool, attr));
              break;
            case phi::AttributeType::INT64:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(int64_t, attr));
              break;
            case phi::AttributeType::INT32S:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::vector<int>, attr));
              break;
            case phi::AttributeType::DATA_TYPE: {
              auto data_type = paddle::framework::TransToPhiDataType(
                  static_cast<framework::proto::VarType::Type>(
                      BOOST_GET_CONST(int, attr)));
              infer_meta_context.EmplaceBackAttr(data_type);
            } break;
            case phi::AttributeType::STRING:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::string, attr));
              break;
            case phi::AttributeType::INT64S:
              switch (AttrTypeID(attr)) {
                case framework::proto::AttrType::LONGS:
                  infer_meta_context.EmplaceBackAttr(
                      BOOST_GET_CONST(std::vector<int64_t>, attr));
                  break;
                case framework::proto::AttrType::INTS: {
                  const auto& vector_int_attr =
                      BOOST_GET_CONST(std::vector<int>, attr);
                  const std::vector<int64_t> vector_int64_attr(
                      vector_int_attr.begin(), vector_int_attr.end());
                  infer_meta_context.EmplaceBackAttr(vector_int64_attr);
                } break;
                default:
                  PADDLE_THROW(platform::errors::Unimplemented(
                      "Unsupported cast op attribute `%s` to vector<int64_t> "
                      "when "
                      "construct KernelContext.",
                      attr_names[i]));
              }
              break;
            case phi::AttributeType::FLOAT32S:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::vector<float>, attr));
              break;
            case phi::AttributeType::STRINGS:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::vector<std::string>, attr));
              break;
            case phi::AttributeType::BOOLS:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::vector<bool>, attr));
              break;
            case phi::AttributeType::FLOAT64S:
              infer_meta_context.EmplaceBackAttr(
                  BOOST_GET_CONST(std::vector<double>, attr));
              break;
            default:
              PADDLE_THROW(platform::errors::Unimplemented(
                  "Unsupported cast op attribute `%s` when construct "
                  "KernelContext in dygraph.",
                  attr_names[i]));
          }
H
hong 已提交
691
        } else {
692
          // do nothing, skip currnet attr
H
hong 已提交
693
        }
694 695 696
    }
  }

697 698
  VLOG(6) << "BuildInferMetaContext: Done attrs";

699
  for (auto& out_name : output_names) {
700
    if (ctx->HasOutputs(out_name, true)) {
701
      auto output_var = std::move(ctx->GetOutputVarPtrs(out_name));
702
      if (output_var.size() == 1) {
703 704
        infer_meta_context.EmplaceBackOutput(
            std::move(CompatMetaTensor(output_var[0], ctx->IsRuntime())));
705
      } else {
C
Chen Weihang 已提交
706
        paddle::small_vector<CompatMetaTensor, phi::kOutputSmallVectorSize>
707
            outputs;
708
        for (const auto& out : output_var) {
709 710 711
          if (ctx->IsRuntime()) {
            if (BOOST_GET_CONST(Variable*, out)) {
              outputs.emplace_back(
712
                  std::move(CompatMetaTensor(out, ctx->IsRuntime())));
713 714 715 716
              continue;
            }
          } else if (BOOST_GET_CONST(VarDesc*, out)) {
            outputs.emplace_back(
717
                std::move(CompatMetaTensor(out, ctx->IsRuntime())));
718 719
            continue;
          }
720
          outputs.emplace_back(std::move(CompatMetaTensor(ctx->IsRuntime())));
721 722 723 724
        }
        infer_meta_context.EmplaceBackOutputs(std::move(outputs));
      }
    } else {
725 726
      infer_meta_context.EmplaceBackOutput(
          std::move(CompatMetaTensor(ctx->IsRuntime())));
727
    }
728 729
  }

730 731
  VLOG(6) << "BuildInferMetaContext: Done outputs";

732 733 734
  return infer_meta_context;
}

C
Chen Weihang 已提交
735 736
}  // namespace framework
}  // namespace paddle