test_optimizer.py 16.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2
import unittest

Q
Qiao Longfei 已提交
3 4 5
import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.optimizer as optimizer
from paddle.v2.fluid.backward import append_backward_ops
Q
Qiao Longfei 已提交
6 7 8 9


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
Qiao Longfei 已提交
10
        init_program = framework.Program()
11
        program = framework.Program()
Q
Qiao Longfei 已提交
12 13 14 15 16 17 18
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
19
        block.append_op(
Q
Qiao Longfei 已提交
20 21 22 23 24 25
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
Q
Qiao Longfei 已提交
26
        opts = sgd_optimizer.minimize(mul_out, init_program)
Q
Qiao Longfei 已提交
27 28 29 30
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "sgd")

31
    def test_sgd_optimizer_with_global_step(self):
Q
Qiao Longfei 已提交
32
        init_program = framework.Program()
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        global_step = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="step")
Q
Qiao Longfei 已提交
49
        learning_rate = 0.01
50
        sgd_optimizer = optimizer.SGDOptimizer(
Q
Qiao Longfei 已提交
51 52
            learning_rate=learning_rate, global_step=global_step)
        opts = sgd_optimizer.minimize(mul_out, init_program)
53 54 55 56 57 58
        self.assertEqual(len(opts), 2)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "sgd")
        increment_op = opts[1]
        self.assertEqual(increment_op.type, "increment")

Q
Qiao Longfei 已提交
59 60 61 62 63 64
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 1)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

Q
Qiao Longfei 已提交
65

66 67 68 69 70 71 72 73
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

74
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
75
        init_program = framework.Program()
76 77 78 79 80 81 82 83 84 85 86 87 88 89
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
90 91 92
        learning_rate = 0.01
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2)
93
        params_grads = append_backward_ops(mul_out)
94 95
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
96 97
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
98 99 100
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
101
        self.assertFalse(sgd_op.attr('use_nesterov'))
102 103 104 105 106 107 108 109 110

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
111 112 113 114 115 116 117 118
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

119
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
120
        init_program = framework.Program()
121 122 123 124 125 126 127 128 129 130 131 132 133 134
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
135
        learning_rate = 0.01
136
        momentum_optimizer = self.MockMomentum(
Q
Qiao Longfei 已提交
137
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True)
138 139 140
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
141 142
        opts = momentum_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
143 144 145
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
146
        self.assertTrue(sgd_op.attr('use_nesterov'))
147 148 149 150 151 152 153 154 155

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
156 157 158 159 160 161 162 163
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

164

165 166 167 168 169 170 171 172 173
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
174
        init_program = framework.Program()
175 176 177 178 179 180 181 182 183 184 185 186 187 188
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
189 190 191
        learning_rate = 0.01
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6)
192
        params_grads = append_backward_ops(mul_out)
193 194
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
195 196
        opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out,
                                                          init_program)
197 198 199 200
        self.assertEqual(len(opts), 1)
        adagrad_op = opts[0]
        self.assertEqual(adagrad_op.type, "adagrad")

201
        # Check accumulators
202 203 204 205 206 207 208
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
209 210 211 212 213 214 215 216
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)

217

218 219 220 221 222 223 224 225 226 227 228 229
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
230
        init_program = framework.Program()
231 232 233 234 235 236 237 238 239 240 241 242 243 244
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
245
        learning_rate = 0.01
246
        adam_optimizer = self.MockAdam(
Q
Qiao Longfei 已提交
247
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
248
        params_grads = append_backward_ops(mul_out)
249 250
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
251 252
        opts = adam_optimizer.create_optimization_pass(params_grads, mul_out,
                                                       init_program)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        self.assertEqual(len(opts), 3)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adam")

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
269 270 271 272 273 274
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

275

276 277 278 279 280 281 282 283 284 285 286 287
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
288
        init_program = framework.Program()
289 290 291 292 293 294 295 296 297 298 299 300 301 302
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
Q
Qiao Longfei 已提交
303
        learning_rate = 0.01
304
        adamax_optimizer = self.MockAdamax(
Q
Qiao Longfei 已提交
305
            learning_rate=learning_rate, beta1=0.9, beta2=0.999)
306 307 308
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
Q
Qiao Longfei 已提交
309 310
        opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out,
                                                         init_program)
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        self.assertEqual(len(opts), 2)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adamax")

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
327 328 329 330 331 332
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)

333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6)
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
        opts = decayed_adagrad_optimizer.create_optimization_pass(
            params_grads, mul_out, init_program)
        self.assertEqual(len(opts), 1)
        decayed_adagrad_op = opts[0]
        self.assertEqual(decayed_adagrad_op.type, "decayed_adagrad")

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
            decayed_adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
        self.assertEqual(init_ops[1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[1].attr('value'), 0.0)


Q
Qiao Longfei 已提交
388 389
if __name__ == '__main__':
    unittest.main()