slice_op.cc 19.7 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/slice_op.h"
16

W
whs 已提交
17
#include <algorithm>
18
#include <memory>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

H
hong 已提交
22
#include "paddle/phi/kernels/funcs/slice_utils.h"
W
whs 已提交
23 24 25 26

namespace paddle {
namespace operators {

27
using Tensor = phi::DenseTensor;
W
whs 已提交
28 29 30 31 32

class SliceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext *ctx) const override {
34 35
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "slice");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "slice");
36

37
    // Case 1: Special treatment when input is a tensor array.
38 39 40
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    auto axes = ctx->Attrs().Get<std::vector<int>>("axes");
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      PADDLE_ENFORCE_EQ(axes.size(),
                        1,
43 44 45 46 47 48 49 50 51 52
                        platform::errors::InvalidArgument(
                            "The size of axes must be 1 when the Input of "
                            "SliceOp is LoDTensorArray, "
                            "but received %d.",
                            axes.size()));
      if (ctx->IsRuntime()) {
        // If the var type of input is LOD_TENSOR_ARRAY,
        // the output shape is determined by SliceKernel:Compute in runtime.
        return;
      } else {
L
liym27 已提交
53 54
        // NOTE(liym27): A better way is needed to get accurate dims of tensor
        // array.
55 56 57 58 59 60
        // The resulted dim of GetInputDim("Input") is the dim of the
        // last item written into TensorArray "Input". Maybe it's a bug to fix.
        ctx->SetOutputDim("Out", ctx->GetInputDim("Input"));
        return;
      }
    }
61 62

    // Case 2: input is a tensor.
W
whs 已提交
63
    auto in_dims = ctx->GetInputDim("Input");
64 65
    PADDLE_ENFORCE_LT(in_dims.size(),
                      7,
T
Thunderbrook 已提交
66 67
                      platform::errors::InvalidArgument(
                          "The rank of input should be less than 7."));
W
whs 已提交
68
    framework::DDim out_dims(in_dims);
69

W
whs 已提交
70 71
    auto starts = ctx->Attrs().Get<std::vector<int>>("starts");
    auto ends = ctx->Attrs().Get<std::vector<int>>("ends");
H
Hongyu Liu 已提交
72
    auto decrease_axis = ctx->Attrs().Get<std::vector<int>>("decrease_axis");
73
    auto infer_flags = ctx->Attrs().Get<std::vector<int>>("infer_flags");
74 75 76 77 78 79
    if (infer_flags.empty()) {
      // Initialize infer_flags with 1.
      // To be compatible with other op tests in which infer_flags is not set.
      infer_flags = std::vector<int>(axes.size(), 1);
    }

80 81 82 83
    // 2.1 Check attrs.
    auto starts_size = starts.size();
    auto ends_size = ends.size();

84
    if (ctx->HasInputs("StartsTensorList")) {
85
      starts_size = ctx->Inputs("StartsTensorList").size();
86 87
      PADDLE_ENFORCE_GT(starts_size,
                        0,
T
Thunderbrook 已提交
88 89
                        platform::errors::InvalidArgument(
                            "StartsTensorList size can't be zero"));
90 91
    }
    if (ctx->HasInputs("EndsTensorList")) {
92
      ends_size = ctx->Inputs("EndsTensorList").size();
93 94
      PADDLE_ENFORCE_GT(ends_size,
                        0,
95 96
                        platform::errors::InvalidArgument(
                            "EndsTensorList size can't be zero"));
97 98
    }

99
    if (!ctx->HasInput("StartsTensor")) {
100
      PADDLE_ENFORCE_EQ(
101 102
          starts_size,
          axes.size(),
T
Thunderbrook 已提交
103 104
          platform::errors::InvalidArgument(
              "The size of starts must be equal to the size of axes."));
105
    }
106
    if (!ctx->HasInput("EndsTensor")) {
T
Thunderbrook 已提交
107
      PADDLE_ENFORCE_EQ(
108 109
          ends_size,
          axes.size(),
T
Thunderbrook 已提交
110 111
          platform::errors::InvalidArgument(
              "The size of ends must be equal to the size of axes."));
112
    }
113 114 115 116 117
    for (auto &axis : axes) {
      if (axis < 0) {
        axis = std::max(0, axis + in_dims.size());
      }
    }
118 119
    phi::funcs::CheckAndUpdateSliceAttrs<int>(
        in_dims, axes, &starts, &ends, nullptr, &infer_flags);
H
Hongyu Liu 已提交
120

121 122
    auto slice_dims = phi::funcs::GetSliceDims<int>(
        in_dims, axes, starts, ends, nullptr, &infer_flags);
123
    if (ctx->IsRuntime()) {
124 125
      out_dims = phi::funcs::GetDecreasedDims<int>(
          slice_dims, decrease_axis, &infer_flags);
126
    } else {
H
hong 已提交
127 128
      out_dims =
          phi::funcs::GetDecreasedDims<int>(slice_dims, decrease_axis, nullptr);
H
Hongyu Liu 已提交
129
    }
130

W
whs 已提交
131
    ctx->SetOutputDim("Out", out_dims);
132
    if (axes.size() > 0 && axes[0] != 0) {
J
jerrywgz 已提交
133 134
      ctx->ShareLoD("Input", /*->*/ "Out");
    }
W
whs 已提交
135 136 137 138
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
139
      const framework::ExecutionContext &ctx) const override {
140 141 142 143
    auto *in_var = ctx.InputVar("Input");
    if (in_var->IsType<framework::LoDTensor>()) {
      auto &in_tensor = in_var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(
144 145
          in_tensor.IsInitialized(),
          true,
146 147
          platform::errors::InvalidArgument(
              "The tensor Input (Input) of Slice op is not initialized."));
148 149
      // NOTE: cuda pinned tensor need to copy its data to target place
      if (platform::is_cuda_pinned_place(in_tensor.place())) {
150 151 152
        return framework::OpKernelType(
            framework::TransToProtoVarType(in_tensor.dtype()),
            ctx.device_context());
153
      }
154 155 156 157

#ifdef PADDLE_WITH_MKLDNN
      auto input_data_type =
          framework::OperatorWithKernel::IndicateVarDataType(ctx, "Input");
158 159 160 161
      auto vec_dims = phi::vectorize(in_tensor.dims());
      bool all_zero_dims = std::all_of(
          vec_dims.cbegin(), vec_dims.cend(), [](int64_t i) { return i == 0; });
      if (!all_zero_dims && this->CanMKLDNNBeUsed(ctx, input_data_type)) {
162 163 164 165 166
        // OneDNN uses blocking format, which cannot be always supported with
        // reorders, because if blocked dimension is not divisible by 8 or
        // 16(depending on which blocking format is used) submemory cannot be
        // created, so in that scenario a fallback is needed
        auto tmp_md = dnnl::memory::desc(
167
            phi::vectorize(ctx.Input<phi::DenseTensor>("Input")->dims()),
168
            dnnl::memory::data_type::f32,
169
            ctx.Input<phi::DenseTensor>("Input")->format());
170
        if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
171 172
          return framework::OpKernelType(input_data_type,
                                         ctx.GetPlace(),
173 174 175 176 177
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
      }
#endif

178 179
      return framework::OpKernelType(
          framework::TransToProtoVarType(in_tensor.dtype()), in_tensor.place());
180
    }
181
    return framework::OpKernelType(
182
        OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace());
183
  }
184

185
  framework::OpKernelType GetKernelTypeForVar(
186 187
      const std::string &var_name,
      const Tensor &tensor,
188 189 190 191 192 193 194
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
195 196
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
W
whs 已提交
197 198 199
  }
};

200 201 202 203 204 205
class SliceOpVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x_name = "Input";
    auto out_name = "Out";
    auto decrease_axis = ctx->GetAttr("decrease_axis");
R
Ruibiao Chen 已提交
206 207
    auto not_decrease =
        paddle::get<std::vector<int>>(decrease_axis).size() == 0;
208 209 210 211 212 213 214 215 216 217 218 219
    if (not_decrease) {
      // The default type of out is LoDTensor.
      // However, if no axis is decreased and the type of input is not
      // LoDTensor, the type of out should be the same as input.
      // For example, input is a LoDTensorArray and no axis is decreased, the
      // output should be a LoDTensorArray.
      ctx->SetOutputType(out_name, ctx->GetInputType(x_name));
      ctx->SetOutputDataType(out_name, ctx->GetInputDataType(x_name));
    }
  }
};

W
whs 已提交
220 221 222
class SliceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    AddInput("Input", "(Tensor) Tensor of data to extract slices from.");
    AddInput("StartsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of StartsTensor, StartsTensorList "
             "and attr(starts).")
        .AsDispensable();
    AddInput("EndsTensor",
             "(Tensor<int32>, optional) If provided, slice will use this."
             "It has the highest priority of EndsTensor, EndsTensorList and "
             "attr(ends).")
        .AsDispensable();
    AddInput(
        "StartsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(starts).")
        .AsDuplicable()
        .AsDispensable();
    AddInput(
        "EndsTensorList",
        "(vector<Tensor<int32>>, optional) If provided, slice will use this."
        "The shape of the tensor in vector MUST BE [1]."
        "It has higher priority compare with attr(ends).")
        .AsDuplicable()
        .AsDispensable();
W
whs 已提交
248 249 250 251 252 253 254
    AddOutput("Out", "Sliced data tensor.");
    AddAttr<std::vector<int>>(
        "axes",
        "(list<int>) Axes that `starts` and `ends` apply to. It's optional."
        "If not present, will be treated as [0, 1, ..., len(`starts`) - 1].");
    AddAttr<std::vector<int>>(
        "starts",
255 256 257 258 259
        "(list<int>) Starting indices of corresponding axis in `axes`")
        .SetDefault({});
    AddAttr<std::vector<int>>(
        "ends", "(list<int>) Ending indices of corresponding axis in `axes`.")
        .SetDefault({});
W
whs 已提交
260
    AddAttr<std::vector<int>>(
261 262
        "infer_flags", "(list<int>) Flags of inferring dims in attributes.")
        .SetDefault({});
H
Hongyu Liu 已提交
263 264
    AddAttr<std::vector<int>>("decrease_axis", "(list<int>) decrease_axis")
        .SetDefault({});
W
whs 已提交
265 266 267 268 269
    AddComment(R"DOC(
Slice Operator.

Produces a slice of the input tensor along multiple axes. Similar to numpy:
https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
270
Slice uses `axes`, `starts` and `ends` attributes to specify the start and
W
whs 已提交
271
end dimension for each axis in the list of axes, it uses this information
272 273
to slice the input data tensor. If a negative value is passed for any of
the start or end indices, it represents number of elements before the end
W
whs 已提交
274
of that dimension. If the value passed to start or end is larger than
275 276
the n (the number of elements in this dimension), it represents n.
For slicing to the end of a dimension with unknown size, it is recommended
277
to pass in INT_MAX. The size of axes must be equal to starts\' and ends\'.
278 279
Following examples will explain how slice works:

280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
.. code-block:: text

    Case1:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            axes = [0, 1]
            starts = [1, 0]
            ends = [2, 3]
        Then:
            result = [ [5, 6, 7], ]

    Case2:
        Given:
            data = [ [1, 2, 3, 4], [5, 6, 7, 8], ]
            starts = [0, 1]
            ends = [-1, 1000]
        Then:
            result = [ [2, 3, 4], ]
W
whs 已提交
298 299 300 301
)DOC");
  }
};

302 303 304 305
class SliceOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

306
  void InferShape(framework::InferShapeContext *ctx) const override {
T
Thunderbrook 已提交
307
    PADDLE_ENFORCE_EQ(
308 309
        ctx->HasInput("Input"),
        true,
T
Thunderbrook 已提交
310
        platform::errors::InvalidArgument("Input should not be null"));
311 312
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")),
                      true,
T
Thunderbrook 已提交
313 314
                      platform::errors::InvalidArgument(
                          "Input(Out@GRAD) should not be null"));
315 316 317 318 319 320 321 322
    auto x_var_type = ctx->GetInputsVarType("Input")[0];
    if (x_var_type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
      // If the var type of input is LOD_TENSOR_ARRAY,
      // the output shape is determined by SliceGradKernel:Compute in runtime.
      if (ctx->IsRuntime()) {
        return;
      }
    }
323 324 325 326 327 328
    auto x_dims = ctx->GetInputDim("Input");
    auto x_grad_name = framework::GradVarName("Input");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
329

330
  framework::OpKernelType GetExpectedKernelType(
331
      const framework::ExecutionContext &ctx) const override {
332 333 334 335 336 337 338 339 340 341
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
      // OneDNN uses blocking format, which cannot be always supported with
      // reorders, because if blocked dimension is not divisible by 8 or
      // 16(depending on which blocking format is used) submemory cannot be
      // created, so in that scenario a fallback is needed
      auto tmp_md = dnnl::memory::desc(
342
          phi::vectorize(
343 344
              ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"))
                  ->dims()),
345
          dnnl::memory::data_type::f32,
346
          ctx.Input<phi::DenseTensor>(framework::GradVarName("Out"))->format());
347
      if (tmp_md.data.format_desc.blocking.inner_nblks == 0)
348 349
        return framework::OpKernelType(input_data_type,
                                       ctx.GetPlace(),
350 351 352 353 354
                                       framework::DataLayout::kMKLDNN,
                                       framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
355
  }
356

357
  framework::OpKernelType GetKernelTypeForVar(
358 359
      const std::string &var_name,
      const Tensor &tensor,
360 361 362 363 364 365 366
      const framework::OpKernelType &expected_kernel_type) const override {
    if (var_name == "StartsTensor" || var_name == "EndsTensor") {
      return expected_kernel_type;
    }
    if (var_name == "StartsTensorList" || var_name == "EndsTensorList") {
      return expected_kernel_type;
    }
367 368
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
369
  }
370 371
};

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
class SliceOpGradVarTypeInference : public framework::VarTypeInference {
 public:
  void operator()(framework::InferVarTypeContext *ctx) const override {
    auto x = "Input";
    auto d_out = framework::GradVarName("Out");
    auto out = framework::GradVarName("Input");
    // The types of grad_input and input should always be the same.
    // The default type of out is LoDTensor, but the type of input can be
    // LoDTensor or LoDTensorArray,
    // so set the type of both to be the same.
    ctx->SetOutputType(out, ctx->GetInputType(x));
    ctx->SetOutputDataType(out, ctx->GetInputDataType(d_out));
  }
};

H
hong 已提交
387 388
template <typename T>
class SliceOpGradMaker : public framework::SingleGradOpMaker<T> {
389
 public:
H
hong 已提交
390
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
391 392

 protected:
393
  void Apply(GradOpPtr<T> bind) const override {
H
hong 已提交
394
    bind->SetInput("Input", this->Input("Input"));
H
hong 已提交
395 396 397 398 399 400 401 402 403 404 405 406
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
H
hong 已提交
407 408 409
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    bind->SetAttrMap(this->Attrs());
410 411 412 413
    bind->SetType("slice_grad");
  }
};

414 415 416 417 418 419
template <typename T>
class SliceDoubleOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
420
  void Apply(GradOpPtr<T> bind) const override {
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
    if (this->HasInput("StartsTensor")) {
      bind->SetInput("StartsTensor", this->Input("StartsTensor"));
    }
    if (this->HasInput("EndsTensor")) {
      bind->SetInput("EndsTensor", this->Input("EndsTensor"));
    }
    if (this->HasInput("StartsTensorList")) {
      bind->SetInput("StartsTensorList", this->Input("StartsTensorList"));
    }
    if (this->HasInput("EndsTensorList")) {
      bind->SetInput("EndsTensorList", this->Input("EndsTensorList"));
    }
    bind->SetInput("Input", this->OutputGrad(framework::GradVarName("Input")));
    bind->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("slice");
  }
};

440
DECLARE_NO_NEED_BUFFER_VARS_INFERER(SliceOpGradNoNeedBufferVarsInferer,
Z
Zeng Jinle 已提交
441
                                    "Input");
442

W
whs 已提交
443 444 445 446
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
447 448 449
REGISTER_OPERATOR(slice,
                  ops::SliceOp,
                  ops::SliceOpMaker,
H
hong 已提交
450
                  ops::SliceOpGradMaker<paddle::framework::OpDesc>,
451 452
                  ops::SliceOpGradMaker<paddle::imperative::OpBase>,
                  ops::SliceOpVarTypeInference);
453 454
REGISTER_OPERATOR(slice_grad,
                  ops::SliceOpGrad,
455 456
                  ops::SliceDoubleOpGradMaker<paddle::framework::OpDesc>,
                  ops::SliceDoubleOpGradMaker<paddle::imperative::OpBase>,
457
                  ops::SliceOpGradNoNeedBufferVarsInferer,
458
                  ops::SliceOpGradVarTypeInference);
W
whs 已提交
459 460

REGISTER_OP_CPU_KERNEL(
461
    slice,
L
Leo Chen 已提交
462 463 464 465 466 467 468 469
    ops::SliceKernel<phi::CPUContext, bool>,
    ops::SliceKernel<phi::CPUContext, int>,
    ops::SliceKernel<phi::CPUContext, int64_t>,
    ops::SliceKernel<phi::CPUContext, float>,
    ops::SliceKernel<phi::CPUContext, double>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SliceKernel<phi::CPUContext, paddle::platform::bfloat16>);
470 471

REGISTER_OP_CPU_KERNEL(
472
    slice_grad,
L
Leo Chen 已提交
473 474 475 476 477 478 479 480
    ops::SliceGradKernel<phi::CPUContext, bool>,
    ops::SliceGradKernel<phi::CPUContext, int>,
    ops::SliceGradKernel<phi::CPUContext, int64_t>,
    ops::SliceGradKernel<phi::CPUContext, float>,
    ops::SliceGradKernel<phi::CPUContext, double>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::complex<float>>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::complex<double>>,
    ops::SliceGradKernel<phi::CPUContext, paddle::platform::bfloat16>);
481 482

REGISTER_OP_CUDA_KERNEL(
483
    slice,
L
Leo Chen 已提交
484 485 486 487 488 489 490 491 492
    ops::SliceKernel<phi::GPUContext, bool>,
    ops::SliceKernel<phi::GPUContext, float>,
    ops::SliceKernel<phi::GPUContext, double>,
    ops::SliceKernel<phi::GPUContext, int>,
    ops::SliceKernel<phi::GPUContext, int64_t>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::float16>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::bfloat16>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::complex<float>>,
    ops::SliceKernel<phi::GPUContext, paddle::platform::complex<double>>);
493 494

REGISTER_OP_CUDA_KERNEL(
495
    slice_grad,
L
Leo Chen 已提交
496 497 498 499 500 501 502 503 504
    ops::SliceGradKernel<phi::GPUContext, bool>,
    ops::SliceGradKernel<phi::GPUContext, float>,
    ops::SliceGradKernel<phi::GPUContext, double>,
    ops::SliceGradKernel<phi::GPUContext, int>,
    ops::SliceGradKernel<phi::GPUContext, int64_t>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::float16>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::bfloat16>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::complex<float>>,
    ops::SliceGradKernel<phi::GPUContext, paddle::platform::complex<double>>);