Fork自 PaddlePaddle / Paddle
- backward_api : matmul_grad
forward : matmul (const Tensor& x, const Tensor& y, bool transpose_x=false, bool transpose_y=false) -> Tensor(out)
args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, bool transpose_x=false, bool transpose_y=false) output : Tensor(x_grad), Tensor(y_grad) infer_meta : func : MatmulGradInferMeta kernel : func : matmul_grad - backward_api : scale_grad forward : scale (const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) -> Tensor(out) args : (const Tensor& out_grad, const Scalar& scale, float bias=0.0, bool bias_after_scale=true) output : Tensor(x_grad) invoke : scale(out_grad, scale, bias, bias_after_scale) # TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future. # # - backward_api : matmul_double_grad # forward : matmul_grad (const Tensor& x, const Tensor& y, const Tensor& out_grad, bool transpose_x, bool transpose_y) -> tuple<Tensor, Tensor>(dx, dy) # args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, bool transpose_x, bool transpose_y) # output : tuple<Tensor, Tensor, Tensor> // d2x, d2y, dout_grad # infer_meta : # func : MatmulDoubleGradInferMeta # kernel : # func : matmul_double_grad # - backward_api : matmul_triple_grad # forward : matmul_double_grad (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, bool transpose_x, bool transpose_y) -> tuple<Tensor, Tensor, Tensor>(d2x, d2y, dout_grad) # args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, const Tensor& d2x_grad, const Tensor& d2y_grad, const Tensor& dout_grad_grad, bool transpose_x, bool transpose_y) # output : tuple<Tensor, Tensor, Tensor, Tensor, Tensor> // d3x, d3y, d2out_grad, ddx_grad, ddy_grad # infer_meta : # func : MatmulTripleGradInferMeta # kernel : # func : matmul_triple_grad