“2d16d69b5f06cbd00fafe42f71d47328c9b8a7f4”上不存在“paddle/phi/kernels/kps/reduce_max_kernel.cu”
variable_wrapper.h 11.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

17
#include <map>
18
#include <memory>
19
#include <string>
20 21
#include <utility>

22
#include "paddle/fluid/framework/op_kernel_type.h"
23
#include "paddle/fluid/framework/variable.h"
24
#include "paddle/fluid/imperative/hooks.h"
25
#include "paddle/fluid/imperative/op_base.h"
26 27 28 29

namespace paddle {
namespace imperative {

30 31
class InteriorVarHookPipeline;
class LeafVarHookPipeline;
32 33 34
class VarBase;
class GradOpNode;

35 36
class VariableWrapper {
 public:
37 38
  friend class VarBase;

39 40
  explicit VariableWrapper(const std::string& name) : name_(name) {}

41 42
  ~VariableWrapper() { VLOG(10) << "Destruct VariableWrapper: " << Name(); }

43 44 45 46 47 48 49
  const framework::Variable& Var() const { return var_; }

  framework::Variable* MutableVar() { return &var_; }

  // This is used for python api
  void SetOverridedStopGradient(bool stop_gradient) {
    overrided_stop_gradient_ = static_cast<int>(stop_gradient);
50 51 52 53

    if (auto grad_var = grad_var_.lock()) {
      grad_var->SetOverridedStopGradient(stop_gradient);
    }
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  }

  // This is used for python api
  bool OverridedStopGradient() const { return overrided_stop_gradient_ != 0; }

  // This is used inside C++
  int InnerOverridedStopGradient() const { return overrided_stop_gradient_; }

  // This is used inside C++
  void InnerSetOverridedStopGradient(bool stop_gradient) {
    if (overrided_stop_gradient_ == -1) {
      overrided_stop_gradient_ = static_cast<int>(stop_gradient);
    } else {
      VLOG(6) << "Ignore Stop gradient conversion for Var: " << Name()
              << "Set value is: " << overrided_stop_gradient_;
    }
70 71 72 73

    if (auto grad_var = grad_var_.lock()) {
      grad_var->InnerSetOverridedStopGradient(stop_gradient);
    }
74 75
  }

76 77 78 79 80 81 82 83 84 85 86
  bool IsLeaf() const {
    if (OverridedStopGradient()) {
      return true;
    }
    if (HasGradVar() && !GetGradVar()->HasGradNode()) {
      return true;
    }
    return false;
  }

  bool IsLeafGrad() const {
87
    if (!HasGradNode() && !OverridedStopGradient()) {
88 89 90 91 92
      return true;
    }
    return false;
  }

93 94 95 96
  void SetPersistable(bool persistable) { persistable_ = persistable; }

  bool Persistable() const { return persistable_; }

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
  bool IsEmpty() const {
    bool is_empty = true;
    if (var_.IsInitialized()) {
      const framework::Tensor* tensor = nullptr;
      if (var_.IsType<framework::LoDTensor>()) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (var_.IsType<framework::SelectedRows>()) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        PADDLE_THROW(platform::errors::PermissionDenied(
            "Only support LoDTensor and SelectedRows for gradient var"));
      }
      if (tensor && tensor->IsInitialized()) {
        is_empty = false;
      }
    }
    return is_empty || is_empty_;
  }

  // TODO(zhouwei): fix Tensor.clear_gradient() bug, function SetIsEmpty() isn't
  // need
  void SetIsEmpty(bool is_empty) { is_empty_ = is_empty; }

120 121 122 123 124 125 126 127
  const std::string& Name() const { return name_; }

  void SetName(const std::string& name) { name_ = name; }

  void SetType(framework::proto::VarType::Type type) { type_ = type; }

  framework::proto::VarType::Type Type() const { return type_; }

128 129 130 131 132 133 134 135 136 137 138 139
  std::shared_ptr<VariableWrapper> GetGradVar() const {
    return grad_var_.lock();
  }

  const std::weak_ptr<VariableWrapper>& GetWeakGradVar() const {
    return grad_var_;
  }

  std::shared_ptr<GradOpNode> GetGradNode() const { return grad_node_.lock(); }

  bool HasGradNode() const { return !grad_node_.expired(); }

140 141
  bool HasGradVar() const { return !grad_var_.expired(); }

142 143 144 145
  void SetDataType(framework::proto::VarType::Type data_type) {
    data_type_ = data_type;
  }

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  framework::proto::VarType::Type DataType() const {
    const framework::Tensor* tensor = nullptr;
    if (var_.IsInitialized()) {
      if (type_ == framework::proto::VarType::LOD_TENSOR) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (type_ == framework::proto::VarType::SELECTED_ROWS) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        VLOG(6) << "Variable " << name_ << " is not initialized";
        return data_type_;
      }
    }
    if (tensor && tensor->IsInitialized()) {
      return tensor->type();
    } else {
      VLOG(6) << "The tensor of variable " << name_ << " is not initialized";
      return data_type_;
    }
  }

166 167 168 169 170 171 172 173
  void SetForwardDataType(framework::proto::VarType::Type data_type) {
    fwd_data_type_ = data_type;
  }

  framework::proto::VarType::Type ForwardDataType() const {
    return fwd_data_type_;
  }

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  const platform::Place Place() const {
    const framework::Tensor* tensor = nullptr;
    auto place =
        platform::CPUPlace();  // Default place for var not initialized.
    if (var_.IsInitialized()) {
      if (type_ == framework::proto::VarType::LOD_TENSOR) {
        tensor = &(var_.Get<framework::LoDTensor>());
      } else if (type_ == framework::proto::VarType::SELECTED_ROWS) {
        tensor = &(var_.Get<framework::SelectedRows>().value());
      } else {
        VLOG(6) << "Variable " << name_ << " is not initialized";
        return place;
      }
    }
    if (tensor && tensor->IsInitialized()) {
      return tensor->place();
    } else {
      VLOG(6) << "The tensor of variable " << name_ << " is not initialized";
      return place;
    }
  }

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  /* Hook related method: only can be call by GradVarBase */

  bool HasInteriorHooks() const { return interior_hooks_ != nullptr; }

  bool HasLeafHooks() const { return leaf_hooks_ != nullptr; }

  void AddGradVarInteriorHook(std::unique_ptr<OpBasePreHook>&& hook) {
    auto interior_hooks = GetGradVarInteriorHooksSafely();
    interior_hooks->add_hook(std::move(hook));
  }

  void AddGradVarLeafHook(std::unique_ptr<GradAccumulatorPostHook>&& hook) {
    auto leaf_hooks = GetGradVarLeafHooksSafely();
    leaf_hooks->add_hook(std::move(hook));
  }

  void AddGradVarLeafBackwardHook(
      std::unique_ptr<GradAccumulatorPostHook>&& hook) {
    auto leaf_hooks = GetGradVarLeafHooksSafely();
    leaf_hooks->add_backward_hook(std::move(hook));
  }

  const std::shared_ptr<InteriorVarHookPipeline>& GetInteriorHooks() const {
    return interior_hooks_;
  }

  std::shared_ptr<InteriorVarHookPipeline>& GetInteriorHooks() {
    return interior_hooks_;
  }

  const std::shared_ptr<LeafVarHookPipeline>& GetLeafHooks() const {
    return leaf_hooks_;
  }

  std::shared_ptr<LeafVarHookPipeline>& GetLeafHooks() { return leaf_hooks_; }

232 233 234 235 236 237 238 239 240 241 242
  uint32_t InplaceVersionSnapshot() const { return inplace_version_snapshot_; }

  void ResetInplaceVersion() {
    auto new_version = var_.CurrentInplaceVersion();

    VLOG(6) << "The wrapper version of VariableWrapper '" << name_
            << "' will be updated from " << inplace_version_snapshot_ << "to "
            << new_version;
    inplace_version_snapshot_ = new_version;
  }

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  bool hasCacheKey(const paddle::framework::OpKernelType& key) {
    return var_cache.find(key) != var_cache.end();
  }

  std::shared_ptr<VariableWrapper> getCacheValue(
      const paddle::framework::OpKernelType& key) {
    return var_cache[key];
  }

  void setCacheValue(const paddle::framework::OpKernelType& key,
                     std::shared_ptr<VariableWrapper> val) {
    var_cache[key] = val;
    return;
  }

258 259 260 261
 private:
  void SetGradVar(const std::shared_ptr<VariableWrapper>& var) {
    auto shared_var = grad_var_.lock();
    if (shared_var != var) {
262 263 264 265
      PADDLE_ENFORCE_EQ(
          shared_var, nullptr,
          platform::errors::PermissionDenied(
              "Cannot set gradient variable wrapper twice for %s", name_));
266 267 268 269 270 271 272 273 274 275 276 277
      grad_var_ = var;
    }
  }

  void SetGradNode(const std::shared_ptr<GradOpNode>& grad_node) {
    if (!grad_node) {
      grad_node_.reset();
      return;
    }

    auto shared_node = grad_node_.lock();
    if (shared_node != grad_node) {
278 279 280 281 282 283 284
      if (grad_node->InplaceGradNameMap().empty()) {
        // grad_node doesn't have Inplace message
        PADDLE_ENFORCE_EQ(
            shared_node, nullptr,
            platform::errors::PermissionDenied(
                "Cannot set gradient op twice unless using Inplace Strategy."));
      } else if (shared_node) {
285 286 287
        VLOG(3) << "The gradient op of Var (" << Name()
                << ") has been set twice. Because Inplace Strategy is used.";
      }
288 289 290 291
      grad_node_ = grad_node;
    }
  }

292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
  /* Hook related private methods */
  std::shared_ptr<VariableWrapper> GetGradVarSafely() const {
    auto shared_grad_var = grad_var_.lock();
    PADDLE_ENFORCE_NOT_NULL(
        shared_grad_var,
        platform::errors::PermissionDenied(
            "Cannot add gradient hook on Tensor without gradient."));
    return shared_grad_var;
  }

  std::shared_ptr<InteriorVarHookPipeline>& GetGradVarInteriorHooksSafely() {
    auto shared_grad_var = GetGradVarSafely();
    PADDLE_ENFORCE_EQ(HasGradNode(), true,
                      platform::errors::PermissionDenied(
                          "Only interior Tensor in backward can register "
                          "interior gradient hook."));
    if (shared_grad_var->interior_hooks_ == nullptr) {
      shared_grad_var->interior_hooks_ =
          std::make_shared<InteriorVarHookPipeline>();
    }
    return shared_grad_var->interior_hooks_;
  }

  std::shared_ptr<LeafVarHookPipeline>& GetGradVarLeafHooksSafely() {
    auto shared_grad_var = GetGradVarSafely();
    PADDLE_ENFORCE_EQ(
        HasGradNode(), false,
        platform::errors::PermissionDenied(
            "Only leaf Tensor in backward can register leaf gradient hook."));
    if (shared_grad_var->leaf_hooks_ == nullptr) {
      shared_grad_var->leaf_hooks_ = std::make_shared<LeafVarHookPipeline>();
    }
    return shared_grad_var->leaf_hooks_;
  }

327 328 329 330
 private:
  framework::Variable var_;
  std::string name_;

331 332 333 334
  // Used for cache the dtype promotioned variableWrapper in real and complex
  // compute of Paddle Quantum
  std::map<paddle::framework::OpKernelType, std::shared_ptr<VariableWrapper>>
      var_cache;
335 336 337 338 339
  // add this property for users may set stop_gradient themselves and this
  // should override the frameworks setting (-1) unset, (1) true, (0) false
  int overrided_stop_gradient_{-1};
  bool persistable_{false};

340 341 342 343
  // Used for checking whether there is any inplace operation affecting gradient
  // calculation.
  uint32_t inplace_version_snapshot_{0};

344 345
  framework::proto::VarType::Type type_{framework::proto::VarType::LOD_TENSOR};
  framework::proto::VarType::Type data_type_{framework::proto::VarType::FP32};
346

347 348 349 350 351 352 353
  // See [ Why need handle complex gradient to real gradient? ]
  // Used for grad var to get the data type of its corresponding forward var,
  // if inconsistent, the data type of grad var needs to be casted to be
  // consistent with forward var
  framework::proto::VarType::Type fwd_data_type_{
      static_cast<framework::proto::VarType::Type>(-1)};

354 355
  std::weak_ptr<VariableWrapper> grad_var_;
  std::weak_ptr<GradOpNode> grad_node_;
356

357 358 359 360
  // TODO(zhouwei): fix bug of Tensor.clear_gradient(), function SetIsEmpty()
  // isn't need
  bool is_empty_{false};

361 362 363 364 365
  // NOTE: only grad var can hold hooks now
  // only interior var can hold interior hooks
  std::shared_ptr<InteriorVarHookPipeline> interior_hooks_;
  // only leaf var can hold leaf hooks
  std::shared_ptr<LeafVarHookPipeline> leaf_hooks_;
366 367 368 369
};

}  // namespace imperative
}  // namespace paddle