gradient_accumulator.cc 23.9 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/gradient_accumulator.h"
16

J
Jiabin Yang 已提交
17 18 19
#include <algorithm>
#include <memory>
#include <utility>
20

J
Jiabin Yang 已提交
21 22 23 24 25
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/imperative/layer.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
26
#include "paddle/fluid/operators/math/selected_rows_functor.h"
27 28
#include "paddle/fluid/platform/complex128.h"
#include "paddle/fluid/platform/complex64.h"
J
Jiabin Yang 已提交
29
#include "paddle/fluid/platform/device_context.h"
30
#include "paddle/fluid/platform/float16.h"
J
Jiabin Yang 已提交
31
#include "paddle/fluid/platform/profiler.h"
H
hong 已提交
32 33 34
#ifdef PADDLE_WITH_XPU
#include "xpu/refactor/math.h"
#endif
J
Jiabin Yang 已提交
35 36 37 38

namespace paddle {
namespace imperative {

39 40 41
static void MoveOrCopyVar(framework::Variable* dst, framework::Variable* src,
                          bool force_copy) {
  if (!force_copy) {
42
    VLOG(6) << "Just Move Variable when sum gradients within this graph";
43 44 45 46
    *dst = std::move(*src);
    return;
  }

47
  VLOG(6) << "Copy occurs when sum gradients within this graph";
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  if (src->IsType<framework::LoDTensor>()) {
    auto& src_tensor = src->Get<framework::LoDTensor>();
    if (!dst->IsType<framework::LoDTensor>()) {
      dst->Clear();
    }
    auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
    framework::TensorCopy(src_tensor, src_tensor.place(), dst_tensor);
    dst_tensor->set_lod(src_tensor.lod());
  } else if (src->IsType<framework::SelectedRows>()) {
    auto& src_selected_rows = src->Get<framework::SelectedRows>();
    if (!dst->IsType<framework::SelectedRows>()) {
      dst->Clear();
    }
    auto* dst_selected_rows = dst->GetMutable<framework::SelectedRows>();
    framework::TensorCopy(src_selected_rows.value(),
                          src_selected_rows.value().place(),
                          dst_selected_rows->mutable_value());
    dst_selected_rows->set_rows(src_selected_rows.rows());
    dst_selected_rows->set_height(src_selected_rows.height());
  } else {
    PADDLE_THROW(platform::errors::PermissionDenied(
69
        "Only support LoDTensor and SelectedRows for sum gradient"));
70 71 72
  }
}

J
Jiabin Yang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85
template <typename T>
class TensorAddFunctor : public boost::static_visitor<> {
 public:
  TensorAddFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

H
hong 已提交
86 87 88 89 90 91 92
#ifdef PADDLE_WITH_XPU
  void operator()(const platform::XPUPlace& place) {
    platform::XPUDeviceContext* ctx = dynamic_cast<platform::XPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    xpu::add<T>(ctx->x_context(), x_, y_, y_, static_cast<int>(numel_));
  }
#else
93 94 95 96 97 98
  void operator()(const platform::XPUPlace& place) {
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
  }
H
hong 已提交
99
#endif
100

101
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
J
Jiabin Yang 已提交
102 103 104 105 106 107 108 109 110
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
111 112 113 114
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
115 116 117 118 119
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
120 121 122 123
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Gradient accumulation on place (%s) "
        "is not supported in imperative mode",
        place));
J
Jiabin Yang 已提交
124 125 126 127 128 129 130 131
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

132 133 134 135 136 137 138 139 140 141
template <typename DeviceContext, typename T>
void TensorAddImpl(const framework::Tensor& src, framework::Tensor* dst,
                   const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  paddle::platform::DeviceContext* ctx = pool.Get(place);
  auto dev_ctx = dynamic_cast<DeviceContext*>(ctx);
  operators::math::ElementwiseAddTo<DeviceContext, T> func;
  func(dev_ctx, src, dst);
}

J
Jiabin Yang 已提交
142 143 144 145 146 147 148 149 150 151 152 153
void TensorAdd(const framework::Variable& src, framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_tensor = src.Get<framework::LoDTensor>();

  auto numel = src_tensor.numel();

  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (numel == 0) {
    return;
  }

154 155 156 157 158 159 160
  PADDLE_ENFORCE_EQ(
      dst_tensor->numel(), numel,
      platform::errors::PreconditionNotMet(
          "The number of elements of source tensor and destination tensor "
          "should be equal, but got the number of elements of source tensor is "
          "%zu and the number of elements of destination tensor is %zu.",
          numel, dst_tensor->numel()));
J
Jiabin Yang 已提交
161 162 163 164

  auto data_type = src_tensor.type();
  auto place = src_tensor.place();

165
#define PADDLE_TENSOR_ADD(cpp_type)                                  \
J
Jiabin Yang 已提交
166 167 168 169 170 171 172 173
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) { \
    TensorAddFunctor<cpp_type> func(                                 \
        numel, src_tensor.data<cpp_type>(),                          \
        dst_tensor->mutable_data<cpp_type>(place));                  \
    boost::apply_visitor(func, place);                               \
    return;                                                          \
  }

174
  PADDLE_TENSOR_ADD(float);
H
hong 已提交
175 176
#ifndef PADDLE_WITH_XPU
  // NOTE(phlrain): xpu only support float
177
  PADDLE_TENSOR_ADD(double);
178 179 180 181
  // NOTE(chenweihang): only support complex grad tensor accumulated,
  // support selected rows if needed in the future
  PADDLE_TENSOR_ADD(platform::complex64);
  PADDLE_TENSOR_ADD(platform::complex128);
H
hong 已提交
182
#endif
J
Jiabin Yang 已提交
183

184
#undef PADDLE_TENSOR_ADD
J
Jiabin Yang 已提交
185

186 187
  if (data_type == framework::proto::VarType::FP16) {
    if (platform::is_gpu_place(place)) {
188
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
      return TensorAddImpl<platform::CUDADeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "Gradient accumulation of data type (%s) on place (%s) is not "
          "supported in imperative mode",
          framework::DataTypeToString(data_type), place));
#endif
    } else if (platform::is_cpu_place(place)) {
      return TensorAddImpl<platform::CPUDeviceContext, platform::float16>(
          src_tensor, dst_tensor, place);
    }
  }
  PADDLE_THROW(platform::errors::Unimplemented(
      "Gradient accumulation of data type (%s) on place (%s) is not "
      "supported in imperative mode",
      framework::DataTypeToString(data_type), place));
J
Jiabin Yang 已提交
206 207
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
void SelectedRowsAddToTensor(const framework::Variable& src,
                             framework::Variable* dst) {
  auto* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  auto& src_selected_rows = src.Get<framework::SelectedRows>();
  auto place = dst_tensor->place();
  auto data_type = src_selected_rows.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

#define PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(dev_ctx_type, cpp_type)           \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {         \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);              \
    paddle::operators::math::SelectedRowsAddToTensor<dev_ctx_type, cpp_type> \
        functor;                                                             \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,      \
            dst_tensor);                                                     \
    return;                                                                  \
  }

226
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
227 228 229 230 231 232 233
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TO_TENSOR(platform::CPUDeviceContext, double);
234
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
235 236 237 238 239 240 241 242 243 244
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD_TO_TENSOR

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
static void SelectedRowsAddTensor(
    const framework::Variable& src_selected_rows_var,
    const framework::Variable& src_tensor_var,
    framework::Variable* dst_tensor_var) {
  const auto& src_selected_rows =
      src_selected_rows_var.Get<framework::SelectedRows>();
  const auto& src_tensor = src_tensor_var.Get<framework::LoDTensor>();
  const auto& place = src_tensor.place();
  auto data_type = src_tensor.type();
  auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);

  auto* dst_tensor = dst_tensor_var->GetMutable<framework::LoDTensor>();
  dst_tensor->Resize(src_tensor.dims());
  dst_tensor->mutable_data(place, data_type);

#define PADDLE_SELECTED_ROWS_ADD_TENSOR(dev_ctx_type, cpp_type)            \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {       \
    paddle::operators::math::SelectedRowsAddTensor<dev_ctx_type, cpp_type> \
        functor;                                                           \
    functor(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows,    \
            src_tensor, dst_tensor);                                       \
    return;                                                                \
  }

269
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
270 271 272 273 274 275 276
  if (platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD_TENSOR(platform::CPUDeviceContext, double);
277
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
278 279 280 281 282 283 284 285 286 287
  }
#endif

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsAddToTensor",
      framework::DataTypeToString(data_type)));

#undef PADDLE_SELECTED_ROWS_ADD_TENSOR
}

288 289 290
// Note(chenweihang): when two selected rows need to be added,
//   adding one to another is not equal to merging two selected rows
//   to one then add it to a empty selected rows, the after is correct
291 292
std::shared_ptr<VariableWrapper> SelectedRowsMerge(
    const framework::Variable& src1, const framework::Variable& src2) {
293 294 295 296 297 298 299 300 301
  auto& src_selected_rows1 = src1.Get<framework::SelectedRows>();
  auto& src_selected_rows2 = src2.Get<framework::SelectedRows>();
  auto place = src_selected_rows1.value().place();
  auto data_type = src_selected_rows1.value().type();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();

  std::vector<const framework::SelectedRows*> src_selected_rows;
  src_selected_rows.emplace_back(&src_selected_rows1);
  src_selected_rows.emplace_back(&src_selected_rows2);
302
  auto dst_var = std::make_shared<VariableWrapper>("Temp");
303 304 305 306 307 308 309 310 311 312 313 314 315
  auto* dst_selected_rows =
      dst_var->MutableVar()->GetMutable<framework::SelectedRows>();

#define PADDLE_SELECTED_ROWS_ADD(dev_ctx_type, cpp_type)                  \
  if (data_type == framework::DataTypeTrait<cpp_type>::DataType()) {      \
    paddle::platform::DeviceContext* dev_ctx = pool.Get(place);           \
    paddle::operators::math::scatter::MergeAdd<dev_ctx_type, cpp_type>    \
        merge_add;                                                        \
    merge_add(*(dynamic_cast<dev_ctx_type*>(dev_ctx)), src_selected_rows, \
              dst_selected_rows);                                         \
    return dst_var;                                                       \
  }

316
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
317 318 319 320 321 322 323
  if (paddle::platform::is_gpu_place(place)) {
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CUDADeviceContext, double);
  } else {
#endif
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, float);
    PADDLE_SELECTED_ROWS_ADD(platform::CPUDeviceContext, double);
324
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
325 326 327 328 329 330 331 332 333 334
  }
#endif

#undef PADDLE_SELECTED_ROWS_ADD

  PADDLE_THROW(platform::errors::InvalidArgument(
      "Not supported data type %s for SelectedRowsMerge",
      framework::DataTypeToString(data_type)));
}

335
void VariableWrapperAdd(std::shared_ptr<VariableWrapper> var,
336
                        VariableWrapper* dst_var, bool unchange_input) {
337
  auto& src = var->Var();
338
  auto* dst = dst_var->MutableVar();
339 340 341 342 343 344 345 346 347 348 349 350
  if (dst->IsType<framework::LoDTensor>()) {
    if (src.IsType<framework::LoDTensor>()) {
      TensorAdd(src, dst);
    } else if (src.IsType<framework::SelectedRows>()) {
      SelectedRowsAddToTensor(src, dst);
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  } else {
    if (src.IsType<framework::LoDTensor>()) {
351 352 353 354 355 356 357 358 359
      if (unchange_input) {
        framework::Variable new_dst;
        SelectedRowsAddTensor(*dst, src, &new_dst);
        *dst = std::move(new_dst);
      } else {
        auto* src_mutable = var->MutableVar();
        SelectedRowsAddToTensor(*dst, src_mutable);
        *dst = std::move(*(var->MutableVar()));
      }
360
    } else if (src.IsType<framework::SelectedRows>()) {
361
      auto temp = SelectedRowsMerge(src, *dst);
362 363 364 365 366 367 368 369 370
      *dst = std::move(*(temp->MutableVar()));
    } else {
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Unexpected branch, output variable type is %s",
          framework::ToTypeName(dst->Type())));
    }
  }
}

371 372
static platform::Place GetPlaceOfVar(
    const std::shared_ptr<VariableWrapper>& var) {
373 374 375 376 377 378 379 380 381 382 383 384
  platform::Place place;
  if (var->Var().IsType<framework::LoDTensor>()) {
    place = var->Var().Get<framework::LoDTensor>().place();
  } else if (var->Var().IsType<framework::SelectedRows>()) {
    place = var->Var().Get<framework::SelectedRows>().place();
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "only support LoDTensor and SelectedRows in dygraph"));
  }
  return place;
}

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
void GradientAccumulator::AccumulateGrad() {
  /**
   * If the gradient has been calculated by previous graph,
   * it should be added to the previous graph result.
   */
  if (!var_->IsLeafGrad() || !SumGradCompleted() || !HasInnerVar()) {
    return;
  }
  PADDLE_ENFORCE_EQ(HasInnerVar(), true,
                    platform::errors::InvalidArgument(
                        "Leaf tensor should have inner var to store results of "
                        "this auto-grad"));
  PADDLE_ENFORCE_EQ(inner_var_->Var().IsInitialized(), true,
                    platform::errors::InvalidArgument(
                        "Interior var of Leaf tensor  should be initialized."));
  auto* src = inner_var_->MutableVar();
  auto* dst = var_->MutableVar();
  if (!var_->IsEmpty()) {
    VLOG(6) << "Leaf Gradient Var(" << var_->Name()
            << ") has been calculated by previous graph, will accumulate on "
               "previous graph.";
    if (dst->IsType<framework::LoDTensor>()) {
      if (src->IsType<framework::LoDTensor>()) {
        TensorAdd(*src, dst);
      } else if (src->IsType<framework::SelectedRows>()) {
        SelectedRowsAddToTensor(*src, dst);
      }
    } else if (dst->IsType<framework::SelectedRows>()) {
      if (src->IsType<framework::LoDTensor>()) {
        SelectedRowsAddToTensor(*dst, src);
        *dst = std::move(*src);
      } else if (src->IsType<framework::SelectedRows>()) {
        auto temp = SelectedRowsMerge(*src, *dst);
        *dst = std::move(*(temp->MutableVar()));
      }
    } else {
      PADDLE_THROW(platform::errors::PermissionDenied(
          "Only support LoDTensor and SelectedRows for gradient var"));
    }
  } else {
    VLOG(6) << "Leaf Gradient Var(" << var_->Name()
            << ") has not been initialized, not accumulate. Just move";
    *(dst) = std::move(*src);
    var_->SetType(inner_var_->Type());
    var_->SetDataType(inner_var_->DataType());
  }
  inner_var_.reset();
}

void EagerGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                       size_t trace_id, bool unchange_input) {
436 437 438 439 440 441 442 443
  /**
   * If var has grad node, it indicates that this var would be an input
   * of a grad op. Therefore, it should not be changed.
   */
  if (var->HasGradNode()) {
    unchange_input = true;
  }

444
  auto* dst_var = Var();
445
  platform::Place place = GetPlaceOfVar(var);
446 447 448
  if (!dst_var->OverridedStopGradient()) {
    if (CurCnt() == 0) {
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(), unchange_input);
449
    } else {
450 451 452
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
      VariableWrapperAdd(var, dst_var, unchange_input);
453
    }
J
Jiabin Yang 已提交
454
  } else {
455 456 457
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
      VLOG(6) << "Set StopGradient Grad: " << dst_var->Name() << " as zero ";
458
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
459 460 461 462
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
463 464 465 466 467
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
468 469
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
470 471 472
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
473
    }
J
Jiabin Yang 已提交
474
  }
475

476 477 478 479 480 481
  // Type may be changed after OP run, such as VarTypeInference
  // so synchronous VariableWrapper with Variable.
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (dst_var->Var().IsType<framework::SelectedRows>()) {
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
482
  }
483

484
  // Increase curent count
485
  IncreaseCurCnt();
J
Jiabin Yang 已提交
486 487
}

488 489 490
void SortedGradientAccumulator::SumGrad(std::shared_ptr<VariableWrapper> var,
                                        size_t trace_id, bool unchange_input) {
  auto* dst_var = Var();
491
  platform::Place place = GetPlaceOfVar(var);
492
  if (!dst_var->OverridedStopGradient()) {
493
    if (ref_cnt_ == 1) {
494
      MoveOrCopyVar(dst_var->MutableVar(), var->MutableVar(),
495
                    unchange_input || var->HasGradNode());
496 497 498 499 500
    } else {
      if (tmp_grad_vars_.empty()) {
        tmp_grad_vars_.reserve(ref_cnt_);
      }

501
      tmp_grad_vars_.emplace_back(std::move(var), trace_id, unchange_input);
502 503 504 505 506

      if (tmp_grad_vars_.size() != ref_cnt_) {
        return;
      }

507 508
      VLOG(6) << "Sum Gradient for: " << dst_var->Name()
              << " within this graph.";
509 510 511 512 513 514 515 516 517 518
      std::sort(tmp_grad_vars_.begin(), tmp_grad_vars_.end(),
                [](const SavedVarInfo& info1, const SavedVarInfo& info2) {
                  return info1.trace_id > info2.trace_id;
                });

      for (auto& var_info : tmp_grad_vars_) {
        if (var_info.var->HasGradNode()) {
          var_info.unchange_input = true;
        }
      }
519

520
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
521
      if (paddle::platform::is_gpu_place(place)) {
522
        // sum selected rows firstly
523 524 525
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var->Var().IsType<framework::SelectedRows>()) {
            continue;
526
          }
527

528 529
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
530 531
                          var_info.unchange_input);
          } else {
532
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
533
          }
534 535

          var_info.var = nullptr;
536 537
          // Increase count
          IncreaseCurCnt();
538 539 540 541 542 543 544 545 546 547
        }

        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }

          PADDLE_ENFORCE_EQ(var_info.var->Var().IsType<framework::LoDTensor>(),
                            true, platform::errors::PermissionDenied(
                                      "Gradient var must be LoDTensor"));
548 549
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
550 551
                          var_info.unchange_input);
          } else {
552
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
553
          }
554 555

          var_info.var = nullptr;
556 557
          // Increase count
          IncreaseCurCnt();
558 559 560
        }
      } else {
#endif
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        for (auto& var_info : tmp_grad_vars_) {
          if (!var_info.var) {
            continue;
          }
          PADDLE_ENFORCE_EQ(
              var_info.var->Var().IsType<framework::LoDTensor>() ||
                  var_info.var->Var().IsType<framework::SelectedRows>(),
              true, platform::errors::PermissionDenied("The type of Gradient "
                                                       "var must be LoDTensor "
                                                       "or SelectedRows"));
          if (CurCnt() == 0) {
            MoveOrCopyVar(dst_var->MutableVar(), var_info.var->MutableVar(),
                          var_info.unchange_input);
          } else {
            VariableWrapperAdd(var_info.var, dst_var, var_info.unchange_input);
          }
          var_info.var = nullptr;
          // Increase count
          IncreaseCurCnt();
580
        }
581
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
582
      }
583
#endif
584
      tmp_grad_vars_.clear();
J
Jiabin Yang 已提交
585
    }
586
  } else {
587 588
    if (!dst_var->Var().IsInitialized() ||
        !dst_var->Var().Get<framework::LoDTensor>().IsInitialized()) {
589 590
      VLOG(6) << "Set StopGradient Grad: " << var->Name() << " as zero";
      auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
591 592 593 594
      if (!dst_var->Var().IsInitialized()) {
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
        VLOG(6) << "Dims of " << dst_var->Name() << " is set as: "
595 596 597 598 599
                << var->Var().Get<framework::LoDTensor>().dims();
        tensor->Resize(var->Var().Get<framework::LoDTensor>().dims());
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      } else {
600 601
        auto* tensor =
            dst_var->MutableVar()->GetMutable<framework::LoDTensor>();
602 603 604
        tensor->mutable_data(place, var->DataType());
        operators::math::set_constant(*dev_ctx, tensor, 0.0);
      }
J
Jiabin Yang 已提交
605
    }
606
    // looks like tmp_grad_vars will not have any member but just in case
J
Jiabin Yang 已提交
607 608
    tmp_grad_vars_.clear();
  }
609

610 611 612 613
  if (dst_var->Var().IsType<framework::LoDTensor>()) {
    dst_var->SetType(framework::proto::VarType::LOD_TENSOR);
  } else if (dst_var->Var().IsType<framework::SelectedRows>()) {
    dst_var->SetType(framework::proto::VarType::SELECTED_ROWS);
614
  }
J
Jiabin Yang 已提交
615 616 617 618
}

}  // namespace imperative
}  // namespace paddle