test_matmul_op.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import sys
sys.path.append("..")
import paddle.fluid.core as core
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard


def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
    BATCH_SIZE = 2
    M = 3
    N = 4
    K = 5
    if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
        K = 1
    if dim_X == 1:
        if transpose_X:
            shape_X = [M]
        else:
            shape_X = [K]
    if dim_Y == 1:
        if transpose_Y:
            shape_Y = [N]
        else:
            shape_Y = [K]
    if dim_X >= 2:
        if transpose_X:
            shape_X = [K, M]
        else:
            shape_X = [M, K]
    if dim_X == 3:
        shape_X = [BATCH_SIZE] + shape_X
    if dim_Y >= 2:
        if transpose_Y:
            shape_Y = [N, K]
        else:
            shape_Y = [K, N]
    if dim_Y == 3:
        shape_Y = [BATCH_SIZE] + shape_Y
    return shape_X, shape_Y


def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
    """Reference forward implementation using np.matmul."""
    # np.matmul does not support the transpose flags, so we manually
    # transpose X and Y appropriately.
    if transpose_X:
        if X.ndim == 1:
            X = X.reshape((X.size, 1))
        elif X.ndim == 2:
            X = X.T
        else:
            dim = [i for i in range(len(X.shape))]
            dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
            X = np.transpose(X, tuple(dim))
    if transpose_Y:
        if Y.ndim == 1:
            Y = Y.reshape((1, Y.size))
        else:
            dim = [i for i in range(len(Y.shape))]
            dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
            Y = np.transpose(Y, tuple(dim))

    Out = np.matmul(X, Y)
    if not Out.shape:
        # We do not support 0-dimensional Tensors (scalars). So where
        # np.matmul outputs a scalar, we must convert to a Tensor of
        # shape (1, ) instead.
        # Everywhere else, we are compatible with np.matmul.
        Out = np.array([Out], dtype="float32")
    return Out


class Generator(object):
    def setUp(self):
        self.op_type = "matmul"
        X = np.random.random(self.shape_X).astype("float32")
        Y = np.random.random(self.shape_Y).astype("float32")
        Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
        self.inputs = {'X': X, 'Y': Y}
        self.attrs = {
            'transpose_X': self.transpose_X,
            'transpose_Y': self.transpose_Y
        }
        self.outputs = {'Out': Out}

    def test_check_output(self):
        self.check_output()
        if paddle.is_compiled_with_xpu() and len(self.inputs['X'].shape) == len(
                self.inputs['Y'].shape) and self.inputs['X'].shape[
                    0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_output_with_place(place, atol=1e-3)

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
        if paddle.is_compiled_with_xpu() and len(self.inputs['X'].shape) == len(
                self.inputs['Y'].shape) and self.inputs['X'].shape[
                    0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_grad_with_place(
                place, ['X', 'Y'], 'Out', max_relative_error=5e-2)

    def test_check_grad_ignore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
        if paddle.is_compiled_with_xpu() and len(self.inputs['X'].shape) == len(
                self.inputs['Y'].shape) and self.inputs['X'].shape[
                    0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_grad_with_place(
                place, ['Y'],
                'Out',
                max_relative_error=5e-2,
                no_grad_set=set("X"))

    def test_check_grad_ignore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
        if paddle.is_compiled_with_xpu() and len(self.inputs['X'].shape) == len(
                self.inputs['Y'].shape) and self.inputs['X'].shape[
                    0] == self.inputs['Y'].shape[0]:
            place = paddle.XPUPlace(0)
            self.check_grad_with_place(
                place, ['X'],
                'Out',
                max_relative_error=5e-2,
                no_grad_set=set('Y'))


class TestMatmulOpError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The inputs type of matmul_op must be Variable.
            input1 = 12
            self.assertRaises(TypeError, fluid.layers.matmul, input1, input1)
            # The inputs dtype of matmul_op must be float32, float64.
            input2 = fluid.layers.data(
                name='input2', shape=[10, 10], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.matmul, input2, input2)
            input3 = fluid.layers.data(
                name='input3', shape=[2, 2], dtype="float16")
            fluid.layers.matmul(input3, input3)


# Negative dimension generation
def generate_negative_dims(in_shape):
    from itertools import combinations
    size = len(in_shape)
    indexs = list()
    shapes = list()
    for i in range(size):
        indexs.extend(list(combinations([j for j in range(size)], i + 1)))
    for idx in indexs:
        shapes.append(
            [in_shape[i] if i not in idx else -1 for i in range(size)])
    return shapes


# Build program with inputs sizes that contain negative numbers
def test_negative_dims_program(obj):
    for shape_x in generate_negative_dims(obj.shape_X):
        for shape_y in generate_negative_dims(obj.shape_Y):
            X = np.random.random(obj.shape_X).astype("float32")
            Y = np.random.random(obj.shape_Y).astype("float32")
            Ref = reference_matmul(X, Y, obj.transpose_X, obj.transpose_Y)
            with program_guard(Program(), Program()):
                x = fluid.data(name='x', shape=shape_x, dtype='float32')
                y = fluid.data(name='y', shape=shape_y, dtype='float32')
                output = fluid.layers.matmul(x, y, obj.transpose_X,
                                             obj.transpose_Y)
                obj.assertEqual(len(Ref.shape), len(output.shape))
                for idx in range(len(Ref.shape)):
                    if output.shape[idx] != -1:
                        obj.assertEqual(Ref.shape[idx], output.shape[idx])
                exe = fluid.Executor(fluid.CPUPlace())
                res, = exe.run(fluid.default_main_program(),
                               feed={'x': X,
                                     'y': Y},
                               fetch_list=[output])
                np.allclose(res, Ref, atol=1e-5)


# Generate program api cases for all negative possibilities
def api_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulAPI_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
    globals()[test_name] = type(test_name, (unittest.TestCase, ), {
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
        'test_propram': test_negative_dims_program,
    })


# Generate operators cases for all possibilities
def inject_test(dim_x, dim_y, trans_x, trans_y):
    test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
        dim_x, dim_y, trans_x, trans_y))
    shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
                                                  trans_y)
    globals()[test_name] = type(test_name, (Generator, OpTest), {
        'shape_X': shape_x,
        'shape_Y': shape_y,
        'transpose_X': trans_x,
        'transpose_Y': trans_y,
    })


for dim_X in (1, 2, 3):
    for dim_Y in (1, 2, 3):
        for transose_x in (False, True):
            for transose_y in (False, True):
                inject_test(dim_X, dim_Y, transose_x, transose_y)
                api_test(dim_X, dim_Y, transose_x, transose_y)


# Test case n-dim
def generate_compatible_shapes(dim, transpose_X, transpose_Y):
    M = 2
    N = 4
    K = 3
    shape_X = [2 for _ in range(dim - 2)]
    shape_Y = [2 for _ in range(dim - 2)]

    if transpose_X:
        shape_X += [K, M]
    else:
        shape_X += [M, K]

    if transpose_Y:
        shape_Y += [N, K]
    else:
        shape_Y += [K, N]

    return shape_X, shape_Y


# # Test case n-dim
for dim in [4]:
    for transpose_X in [False, True]:
        for transpose_Y in [False, True]:
            test_name = (
                'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
                    dim, dim, transpose_X, transpose_Y))
            shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X,
                                                          transpose_Y)
            globals()[test_name] = type(test_name, (Generator, OpTest), {
                'shape_X': shape_X,
                'shape_Y': shape_Y,
                'transpose_X': transpose_X,
                'transpose_Y': transpose_Y,
            })


class API_TestMm(unittest.TestCase):
    def test_out(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2], dtype="float64")
            y = fluid.data(name='y', shape=[2], dtype='float64')
            res = fluid.data(name="output", shape=[1], dtype="float64")
            result = paddle.mm(x, y)
            exe = fluid.Executor(fluid.CPUPlace())
            data1 = np.random.rand(2)
            data2 = np.random.rand(2)
            np_res = exe.run(feed={'x': data1, 'y': data2}, fetch_list=[result])
            expected_result = np.matmul(
                data1.reshape(1, 2), data2.reshape(2, 1))

        self.assertTrue(
            np.allclose(
                np_res, expected_result, atol=1e-5),
            "two value is\
            {}\n{}, check diff!".format(np_res, expected_result))

    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.mm(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))


class Test_API_Matmul(unittest.TestCase):
    def test_dygraph_without_out(self):
        device = fluid.CPUPlace()
        with fluid.dygraph.guard(device):
            input_array1 = np.random.rand(3, 4).astype("float64")
            input_array2 = np.random.rand(4, 3).astype("float64")
            data1 = fluid.dygraph.to_variable(input_array1)
            data2 = fluid.dygraph.to_variable(input_array2)
            out = paddle.matmul(data1, data2)
            expected_result = np.matmul(input_array1, input_array2)
        self.assertTrue(np.allclose(expected_result, out.numpy()))


class API_TestMmError(unittest.TestCase):
    def test_errors(self):
        def test_error1():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(name="data1", shape=[10, 2], dtype="float32")
                data2 = fluid.data(name="data2", shape=[3, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error1)

        def test_error2():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[-1, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[-1, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        test_error2()

        def test_error3():
            with fluid.program_guard(fluid.Program(), fluid.Program()):
                data1 = fluid.data(
                    name="data1", shape=[10, 10, 2], dtype="float32")
                data2 = fluid.data(
                    name="data2", shape=[3, 2, 10], dtype="float32")
                paddle.mm(data1, data2)

        self.assertRaises(ValueError, test_error3)


if __name__ == "__main__":
    unittest.main()