test_initializer.py 38.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import numpy as np
18
import math
19 20
import unittest

21
import paddle
22
import paddle.fluid as fluid
23 24
import paddle.fluid.framework as framework
import paddle.fluid.initializer as initializer
25
from paddle.fluid.core import VarDesc
26 27 28 29

DELTA = 0.00001


30 31 32
def check_cast_op(op):
    return op.type == 'cast' and \
           op.attr('in_dtype') == VarDesc.VarType.FP32 and \
33
           op.attr('out_dtype') in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]
34 35


36 37 38 39 40 41 42 43
def output_hist(out):
    hist, _ = np.histogram(out, range=(-1, 1))
    hist = hist.astype("float32")
    hist /= float(out.size)
    prob = 0.1 * np.ones((10))
    return hist, prob


44
class TestConstantInitializer(unittest.TestCase):
45 46 47 48 49 50 51 52 53 54 55
    def test_calculate_gain(self):
        self.assertEqual(paddle.nn.initializer.calculate_gain('sigmoid'), 1)
        self.assertEqual(paddle.nn.initializer.calculate_gain('linear'), 1)
        self.assertEqual(paddle.nn.initializer.calculate_gain('conv2d'), 1)
        self.assertEqual(paddle.nn.initializer.calculate_gain('tanh'), 5.0 / 3)
        self.assertEqual(
            paddle.nn.initializer.calculate_gain('relu'), math.sqrt(2.0))
        self.assertEqual(
            paddle.nn.initializer.calculate_gain('leaky_relu', 1), 1)
        self.assertEqual(paddle.nn.initializer.calculate_gain('selu'), 3.0 / 4)

56
    def test_constant_initializer_default_value(self, dtype="float32"):
57 58 59 60
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
61 62
        for _ in range(2):
            block.create_parameter(
63
                dtype=dtype,
64 65 66 67
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer())
68
        num_ops = 1
69
        self.assertEqual(len(block.ops), num_ops)
70 71 72
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)
73
        return block
74

75
    def test_constant_initializer(self, dtype="float32"):
76 77 78 79
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
80 81
        for _ in range(2):
            block.create_parameter(
82
                dtype=dtype,
83 84 85 86
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.ConstantInitializer(2.3))
87
        num_ops = 1
88
        self.assertEqual(len(block.ops), num_ops)
89 90 91
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)
92 93 94 95 96
        return block

    def test_constant_initializer_fp16(self):
        """Test constant initializer with float16
        """
97 98
        self.test_constant_initializer_default_value("float16")
        self.test_constant_initializer("float16")
99

100 101 102 103 104 105 106
    def test_constant_initializer_bf16(self):
        """Test constant initializer with bfloat16
           No cast operator has been added here
        """
        self.test_constant_initializer_default_value("uint16")
        self.test_constant_initializer("uint16")

107 108

class TestUniformInitializer(unittest.TestCase):
109
    def test_uniform_initializer_default_value(self, dtype="float32"):
110 111 112 113
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
114 115
        for _ in range(2):
            block.create_parameter(
116
                dtype=dtype,
117 118 119 120
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer())
121
        num_ops = 2 if dtype == "float16" else 1
122
        self.assertEqual(len(block.ops), num_ops)
123 124 125 126 127
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)
128
        return block
129

D
dzhwinter 已提交
130 131 132 133 134 135
    def test_uniform_initializer_random_seed(self):
        """Test the uniform initializer with manually setting seed
        """
        program = framework.Program()
        program.random_seed = 123
        block = program.global_block()
136 137 138 139 140
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
141
                name="param1",
142 143 144 145 146
                initializer=initializer.UniformInitializer())
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
Q
qiaolongfei 已提交
147
                name="param2",
148
                initializer=initializer.UniformInitializer(seed=456))
D
dzhwinter 已提交
149
        init_op = block.ops[1]
150
        self.assertEqual(init_op.attr("seed"), 456)
D
dzhwinter 已提交
151
        init_op1 = block.ops[0]
152
        self.assertEqual(init_op1.attr("seed"), 123)
D
dzhwinter 已提交
153

154
    def test_uniform_initializer(self, dtype="float32"):
155 156 157 158
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
159 160
        for _ in range(2):
            block.create_parameter(
161
                dtype=dtype,
162 163 164 165
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
166
        num_ops = 2 if dtype == "float16" else 1
167
        self.assertEqual(len(block.ops), num_ops)
168 169 170 171 172
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
173
        return block
174

175
    def test_uniform_initializer_two_op(self, dtype="float32"):
176 177 178 179 180 181
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        for i in range(2):
            block.create_parameter(
182
                dtype=dtype,
183 184 185 186
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.UniformInitializer(-4.2, float(i), 123))
187
        num_ops = 2 if dtype == "float16" else 1
188
        self.assertEqual(len(block.ops), num_ops)
189 190 191
        init_op0 = block.ops[0]
        self.assertEqual(init_op0.type, 'uniform_random')
        self.assertAlmostEqual(init_op0.attr('min'), -4.2, delta=DELTA)
Q
qiaolongfei 已提交
192
        self.assertAlmostEqual(init_op0.attr('max'), 0.0, delta=DELTA)
193
        self.assertEqual(init_op0.attr('seed'), 123)
194 195 196 197 198 199 200 201 202 203 204
        return block

    def test_uniform_initializer_fp16(self):
        """Test uniform initializer with float16
        """
        block = self.test_uniform_initializer_default_value("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer(dtype="float16")
        self.assertTrue(check_cast_op(block.ops[1]))
        block = self.test_uniform_initializer_two_op("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
205

206 207
    def test_uniform_initializer_bf16(self):
        """Test uniform initializer with bfloat16
208
           No cast operator has been added here
209 210 211 212 213
        """
        block = self.test_uniform_initializer_default_value("uint16")
        block = self.test_uniform_initializer(dtype="uint16")
        block = self.test_uniform_initializer_two_op("uint16")

214 215 216 217 218 219 220

class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
221 222 223 224 225 226 227
        for _ in range(2):
            block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer())
228 229 230 231 232 233 234
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

235
    def test_normal_initializer(self, dtype="float32"):
236 237 238 239
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
240 241
        for _ in range(2):
            block.create_parameter(
242
                dtype=dtype,
243 244 245 246
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.NormalInitializer(2.3, 1.9, 123))
247
        num_ops = 1
248
        self.assertEqual(len(block.ops), num_ops)
249 250 251 252 253
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)
254 255 256 257 258
        return block

    def test_normal_initializer_fp16(self):
        """Test normal initializer with float16
        """
259
        self.test_normal_initializer("float16")
260

261 262 263
    def test_normal_initializer_bf16(self):
        """Test normal initializer with bfloat16
        """
264
        self.test_normal_initializer("uint16")
265

266

267 268 269 270 271 272 273
class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
274 275 276 277 278 279 280
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
281 282 283 284 285 286 287 288 289 290 291 292 293 294
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
295 296 297 298 299 300 301
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer())
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
318 319 320 321 322 323 324
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
325 326 327 328 329 330 331 332 333 334 335 336 337 338
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
339 340 341 342 343 344 345
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(uniform=False))
346 347 348 349 350 351 352 353 354 355
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

356 357 358
    def test_xavier_initializer_supplied_arguments(self,
                                                   dtype="float32",
                                                   uniform=True):
359 360 361 362
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
363 364
        for _ in range(2):
            block.create_parameter(
365
                dtype=dtype,
366 367 368 369
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.XavierInitializer(
370 371 372
                    uniform=uniform, fan_in=12, fan_out=23, seed=134))
        num_ops = 2 if (dtype == "float16" or (dtype == "uint16" and
                                               not uniform)) else 1
373
        self.assertEqual(len(block.ops), num_ops)
374
        init_op = block.ops[0]
375 376 377 378 379 380 381
        if uniform:
            self.assertEqual(init_op.type, 'uniform_random')
            limit = np.sqrt(6.0 / (12 + 23))
            self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
            self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        else:
            self.assertEqual(init_op.type, 'gaussian_random')
382
        self.assertEqual(init_op.attr('seed'), 134)
383 384 385 386 387 388 389
        return block

    def test_xavier_initializer_fp16(self):
        """Test the Xavier initializer with float16
        """
        block = self.test_xavier_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
390

391 392 393
    def test_xavier_initializer_bf16(self):
        """Test the Xavier initializer with bfloat16
        """
394 395 396 397 398 399
        block_uniform = self.test_xavier_initializer_supplied_arguments(
            "uint16")
        self.assertEqual(len(block_uniform.ops), 1)
        block_gaussian = self.test_xavier_initializer_supplied_arguments(
            "uint16", False)
        self.assertTrue(check_cast_op(block_gaussian.ops[1]))
400

401

402 403 404 405 406 407 408
class TestMSRAInitializer(unittest.TestCase):
    def test_uniform_msra_initializer(self):
        """Test MSRA initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
409 410 411 412 413 414 415
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
416 417 418 419 420 421 422 423 424 425 426 427 428 429
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_msra_initializer_conv(self):
        """Test MSRA initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
430 431 432 433 434 435 436
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer())
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer(self):
        """Test MSRA initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
452 453 454 455 456 457 458
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
459 460 461 462 463 464 465 466 467 468 469 470 471 472
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer_conv(self):
        """Test MSRA initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
473 474 475 476 477 478 479
        for _ in range(2):
            param = block.create_parameter(
                dtype="float32",
                shape=[5, 10, 15, 20],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(uniform=False))
480 481 482 483 484 485 486 487 488
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

489
    def test_msra_initializer_supplied_arguments(self, dtype="float32"):
490 491 492 493
        """Test the MSRA initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
494 495
        for _ in range(2):
            block.create_parameter(
496
                dtype=dtype,
497 498 499 500 501
                shape=[5, 10],
                lod_level=0,
                name="param",
                initializer=initializer.MSRAInitializer(
                    fan_in=12, seed=134))
502
        num_ops = 2 if dtype == "float16" else 1
503
        self.assertEqual(len(block.ops), num_ops)
504 505 506 507 508 509
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / 12)
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)
510
        return block
511

512 513 514 515 516
    def test_msra_initializer_fp16(self):
        """Test the MSRA initializer with float16
        """
        block = self.test_msra_initializer_supplied_arguments("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
517

518 519 520 521 522
    def test_msra_initializer_bf16(self):
        """Test the MSRA initializer with bfloat16
        """
        block = self.test_msra_initializer_supplied_arguments("uint16")

523 524 525

class TestBilinearInitializer(unittest.TestCase):
    def test_bilinear_initializer(self, dtype="float32"):
526 527 528 529
        """Test the bilinear initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
530 531
        for _ in range(2):
            block.create_parameter(
532
                dtype=dtype,
533 534 535 536
                shape=[8, 1, 3, 3],
                lod_level=0,
                name="param",
                initializer=initializer.BilinearInitializer())
537
        num_ops = 2 if dtype in ["float16", "uint16", "float64"] else 1
538
        self.assertEqual(len(block.ops), num_ops)
539 540
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
541 542
        return block

543 544 545
    def test_bilinear_initializer_fp64(self):
        self.test_bilinear_initializer(dtype='float64')

546 547 548 549 550
    def test_bilinear_initializer_fp16(self):
        """Test the bilinear initializer with supplied arguments
        """
        block = self.test_bilinear_initializer("float16")
        self.assertTrue(check_cast_op(block.ops[1]))
551

552 553 554 555 556 557
    def test_bilinear_initializer_bf16(self):
        """Test the bilinear initializer with supplied arguments
        """
        block = self.test_bilinear_initializer("uint16")
        self.assertTrue(check_cast_op(block.ops[1]))

558 559 560
    def test_type_error(self):
        self.assertRaises(TypeError, self.test_bilinear_initializer, 'int32')

561

Q
Qiao Longfei 已提交
562
class TestNumpyArrayInitializer(unittest.TestCase):
563
    def test_numpy_array_initializer(self, dtype="float32"):
Q
Qiao Longfei 已提交
564 565 566 567 568
        """Test the numpy array initializer with supplied arguments
        """
        import numpy
        program = framework.Program()
        block = program.global_block()
569
        np_array = numpy.random.random((10000)).astype(dtype)
Q
Qiao Longfei 已提交
570 571 572 573 574 575 576
        for _ in range(2):
            block.create_parameter(
                dtype=np_array.dtype,
                shape=np_array.shape,
                lod_level=0,
                name="param",
                initializer=initializer.NumpyArrayInitializer(np_array))
577
        num_ops = 2 if dtype in ["float16", "uint16"] else 1
578
        self.assertEqual(len(block.ops), num_ops)
Q
Qiao Longfei 已提交
579 580
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'assign_value')
581
        assert (init_op.attr('fp32_values') == np_array).all()
582 583 584 585 586 587 588
        return block

    def test_numpy_array_initializer_fp16(self):
        """Test the numpy array initializer with float16
        """
        block = self.test_numpy_array_initializer("float16")
        self.assertTrue(block.ops[1])
Q
Qiao Longfei 已提交
589

590 591 592 593 594 595
    def test_numpy_array_initializer_bf16(self):
        """Test the numpy array initializer with bfloat16
        """
        block = self.test_numpy_array_initializer("uint16")
        self.assertTrue(block.ops[1])

Q
Qiao Longfei 已提交
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
class TestSetGlobalInitializer(unittest.TestCase):
    def test_set_global_weight_initilizer(self):
        """Test Set Global Param initilizer with UniformInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(initializer.Uniform(low=-0.5, high=0.5))
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of param in layers.conv2d is NormalInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

612 613
        # init weight is the first op, and bias is the second
        bias_init_op = block.ops[1]
614 615 616
        self.assertEqual(bias_init_op.type, 'fill_constant')
        self.assertAlmostEqual(bias_init_op.attr('value'), 0.0, delta=DELTA)

617
        param_init_op = block.ops[0]
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)

    def test_set_global_bias_initilizer(self):
        """Test Set Global Bias initilizer with NormalInitializer
        """
        main_prog = framework.Program()
        startup_prog = framework.Program()
        fluid.set_global_initializer(
            initializer.Uniform(
                low=-0.5, high=0.5),
            bias_init=initializer.Normal(
                loc=0.0, scale=2.0))
        with fluid.program_guard(main_prog, startup_prog):
            x = fluid.data(name="x", shape=[1, 3, 32, 32])
            # default initilizer of bias in layers.conv2d is ConstantInitializer
            conv = fluid.layers.conv2d(x, 5, 3)

        block = startup_prog.global_block()
        self.assertEqual(len(block.ops), 2)

642 643
        # init weight is the first op, and bias is the second
        bias_init_op = block.ops[1]
644 645 646 647 648
        self.assertEqual(bias_init_op.type, 'gaussian_random')
        self.assertAlmostEqual(bias_init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(bias_init_op.attr('std'), 2.0, delta=DELTA)
        self.assertEqual(bias_init_op.attr('seed'), 0)

649
        param_init_op = block.ops[0]
650 651 652 653 654 655 656
        self.assertEqual(param_init_op.type, 'uniform_random')
        self.assertAlmostEqual(param_init_op.attr('min'), -0.5, delta=DELTA)
        self.assertAlmostEqual(param_init_op.attr('max'), 0.5, delta=DELTA)
        self.assertEqual(param_init_op.attr('seed'), 0)
        fluid.set_global_initializer(None)


657 658 659 660 661 662 663
class TestUniformInitializerDygraph(unittest.TestCase):
    def test_uniform_initializer(self, dtype="float32"):
        """
        In dygraph mode, we can use initializer directly to initialize a tensor.
        """
        paddle.disable_static()

L
Leo Chen 已提交
664
        tensor = paddle.zeros([1024, 1024, 16])
665
        tensor.stop_gradient = False
L
Leo Chen 已提交
666
        self.assertTrue(np.allclose(np.zeros((1024, 1024, 16)), tensor.numpy()))
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

        uniform_ = paddle.nn.initializer.Uniform()
        uniform_(tensor)

        self.assertEqual(tensor.stop_gradient,
                         False)  # stop_gradient is not changed

        hist, prob = output_hist(tensor.numpy())

        self.assertTrue(
            np.allclose(
                hist, prob, rtol=0, atol=1e-3), "hist: " + str(hist))

        paddle.enable_static()


683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
class TesetconsistencyOfDynamicAndStaticGraph(unittest.TestCase):
    def test_order(self):
        paddle.set_device('cpu')
        SEED = 123
        weight_attr = paddle.framework.ParamAttr(
            name="linear_weight",
            learning_rate=1.0,
            trainable=False,
            regularizer=None,
            initializer=paddle.nn.initializer.TruncatedNormal(
                mean=0.0, std=2.0))
        bias_attr = paddle.framework.ParamAttr(
            name="linear_bias",
            learning_rate=1.0,
            trainable=False,
            regularizer=None,
            initializer=paddle.nn.initializer.TruncatedNormal(
                mean=0.0, std=2.0))

        def run_dynamic_graph():
            paddle.disable_static()
            paddle.seed(SEED)
            linear = paddle.nn.Linear(
                1, 1, weight_attr=weight_attr, bias_attr=bias_attr)
            return linear.weight.numpy(), linear.bias.numpy()
            paddle.enable_static()

        def run_static_graph():
            paddle.enable_static()
            exe = paddle.static.Executor(paddle.CPUPlace())
            paddle.seed(SEED)
            linear = paddle.nn.Linear(
                1, 1, weight_attr=weight_attr, bias_attr=bias_attr)
            res = exe.run(paddle.static.default_startup_program(),
                          fetch_list=['linear_weight', 'linear_bias'])
            return res[0], res[1]

        dynamic_res = run_dynamic_graph()
        static_res = run_static_graph()

        self.assertTrue(np.array_equal(dynamic_res[0], static_res[0]))
        self.assertTrue(np.array_equal(dynamic_res[1], static_res[1]))


727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
# 2-D Parameter with shape: [10, 15]
class TestOrthogonalInitializer1(unittest.TestCase):
    """
    case 1
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal(gain=3.0))
        self.dtype = "float64"
        self.in_features = 10
        self.out_features = 15
        self.num_ops = 9

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        self.assertTrue(np.allclose(np.matmul(a, a.T), 9 * np.eye(10)))

    def test_orthogonal(self):
        self.config()
        paddle.set_default_dtype(self.dtype)

        paddle.disable_static()
        paddle.seed(2021)
        linear = paddle.nn.Linear(
            self.in_features, self.out_features, weight_attr=self.weight_attr)
        res_dygraph = linear.weight.numpy()

        paddle.enable_static()
        paddle.seed(2021)
        start_prog = paddle.static.Program()
        main_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            linear = paddle.nn.Linear(
                self.in_features,
                self.out_features,
                weight_attr=self.weight_attr)

            block = start_prog.global_block()
            self.assertEqual(len(block.ops), self.num_ops)
            self.assertEqual(block.ops[0].type, 'gaussian_random')
            self.assertEqual(block.ops[1].type, 'qr')
            self.assertEqual(block.ops[2].type, 'diag_v2')
            self.assertEqual(block.ops[3].type, 'sign')
            self.assertEqual(block.ops[4].type, 'elementwise_mul')
            self.assertEqual(block.ops[-3].type, 'reshape2')
            self.assertEqual(block.ops[-2].type, 'scale')

            exe = paddle.static.Executor()
            res_static = exe.run(start_prog, fetch_list=[linear.weight])[0]

        self.check_result(res_dygraph, res_static)


# 2-D Parameter with shape: [15, 10]
class TestOrthogonalInitializer2(TestOrthogonalInitializer1):
    """
    case 2
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal(gain=2.0))
        self.dtype = "float64"
        self.in_features = 15
        self.out_features = 10
        self.num_ops = 8

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        self.assertTrue(np.allclose(np.matmul(a.T, a), 4 * np.eye(10)))


# 2-D Parameter with shape: [10, 10]
class TestOrthogonalInitializer3(TestOrthogonalInitializer1):
    """
    case 3
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal())
        self.dtype = "float32"
        self.in_features = 10
        self.out_features = 10
        self.num_ops = 8

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        self.assertTrue(np.allclose(np.matmul(a.T, a), np.eye(10), atol=1.e-6))
        self.assertTrue(np.allclose(np.matmul(a, a.T), np.eye(10), atol=1.e-6))

    def test_error(self):
        self.config()
        with self.assertRaises(AssertionError):
            paddle.nn.Linear(10, 10, bias_attr=self.weight_attr)


# 4-D Parameter with shape: [6, 4, 3, 3]
class TestOrthogonalInitializer4(unittest.TestCase):
    """
    case 4
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal(gain=3.0))
        self.dtype = "float64"
        self.in_features = 4
        self.out_features = 6
        self.kernel_size = (3, 3)

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        a = a.reshape(6, -1)
        self.assertTrue(np.allclose(np.matmul(a, a.T), 9 * np.eye(6)))

    def test_orthogonal(self):
        self.config()
        paddle.set_default_dtype(self.dtype)

        paddle.disable_static()
        paddle.seed(2021)
        conv2d = paddle.nn.Conv2D(
            self.in_features,
            self.out_features,
            self.kernel_size,
            weight_attr=self.weight_attr)
        res_dygraph = conv2d.weight.numpy()

        paddle.enable_static()
        paddle.seed(2021)
        start_prog = paddle.static.Program()
        main_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            conv2d = paddle.nn.Conv2D(
                self.in_features,
                self.out_features,
                self.kernel_size,
                weight_attr=self.weight_attr)
            exe = paddle.static.Executor()
            res_static = exe.run(paddle.static.default_startup_program(),
                                 fetch_list=[conv2d.weight])[0]
        self.check_result(res_dygraph, res_static)


# 4-D Parameter with shape: [50, 4, 3, 3]
class TestOrthogonalInitializer5(TestOrthogonalInitializer4):
    """
    case 5
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal(gain=2.0))
        self.dtype = "float64"
        self.in_features = 4
        self.out_features = 50
        self.kernel_size = (3, 3)

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        a = a.reshape(50, -1)
        self.assertTrue(np.allclose(np.matmul(a.T, a), 4 * np.eye(36)))


# 4-D Parameter with shape: [36, 4, 3, 3]
class TestOrthogonalInitializer6(TestOrthogonalInitializer4):
    """
    case 6
    """

    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Orthogonal())
        self.dtype = "float32"
        self.in_features = 4
        self.out_features = 36
        self.kernel_size = (3, 3)

    def check_result(self, a, b):
        self.assertTrue(np.array_equal(a, b))
        a = a.reshape(36, -1)
        self.assertTrue(np.allclose(np.matmul(a.T, a), np.eye(36), atol=1.e-6))
        self.assertTrue(np.allclose(np.matmul(a, a.T), np.eye(36), atol=1.e-6))


914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
# initialize Conv1D weight
class TestDiracInitializer1(unittest.TestCase):
    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Dirac())
        self.dtype = "float64"
        self.in_channels = 3
        self.out_channels = 2
        self.kernel_size = 3
        self.input_shape = [8, self.in_channels, 10]
        self.conv_layer = paddle.nn.Conv1D
        self.num_ops = 8  #fill_constant*2, reshape*2, assign_value*2, scatter, cast

    def check_result(self, w_dygraph, w_static, conv_in, conv_out):
        self.assertTrue(np.array_equal(w_dygraph, w_static))
        self.assertTrue(np.array_equal(conv_out, conv_in[:, 0:2, 1:9]))

    def test_dirac(self):
        self.config()
        paddle.set_default_dtype(self.dtype)

        paddle.disable_static()
        conv = self.conv_layer(
            self.in_channels,
            self.out_channels,
            self.kernel_size,
            weight_attr=self.weight_attr)
        weight_dygraph = conv.weight.numpy()

        paddle.enable_static()
        start_prog = paddle.static.Program()
        main_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            inp = paddle.rand(self.input_shape)
            conv = self.conv_layer(
                self.in_channels,
                self.out_channels,
                self.kernel_size,
                weight_attr=self.weight_attr)

            output = conv(inp)
            block = start_prog.global_block()
            self.assertEqual(len(block.ops), self.num_ops)
            self.assertEqual(block.ops[0].type, 'fill_constant')
            self.assertEqual(block.ops[1].type, 'reshape')
            self.assertEqual(block.ops[2].type, 'assign_value')
            self.assertEqual(block.ops[3].type, 'assign_value')
            self.assertEqual(block.ops[4].type, 'scatter')
            self.assertEqual(block.ops[5].type, 'reshape')

            exe = paddle.static.Executor()
            exe.run(start_prog)
            fetch = exe.run(main_prog, fetch_list=[inp, output, conv.weight])
            conv_input = fetch[0]
            conv_output = fetch[1]
            weight_static = fetch[2]

        self.check_result(weight_dygraph, weight_static, conv_input,
                          conv_output)


# initialize Conv2D weight
class TestDiracInitializer2(TestDiracInitializer1):
    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Dirac(groups=1))
        self.dtype = "float64"
        self.in_channels = 4
        self.out_channels = 8
        self.kernel_size = (3, 3)
        self.input_shape = [8, self.in_channels, 10, 10]
        self.conv_layer = paddle.nn.Conv2D
        self.num_ops = 8

    def check_result(self, w_dygraph, w_static, conv_in, conv_out):
        self.assertTrue(np.array_equal(w_dygraph, w_static))
        self.assertTrue(
            np.array_equal(conv_out[:, 0:4, :, :], conv_in[:, :, 1:9, 1:9]))
        self.assertTrue(
            np.array_equal(conv_out[:, 4:8, :, :], np.zeros([8, 4, 8, 8])))


# initialize Conv3D weight
class TestDiracInitializer3(TestDiracInitializer1):
    def config(self):
        self.weight_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Dirac(groups=2))
        self.dtype = "float32"
        self.in_channels = 5
        self.out_channels = 10
        self.kernel_size = (3, 3, 3)
        self.input_shape = [8, self.in_channels, 10, 10, 10]
        self.conv_layer = paddle.nn.Conv3D
        self.num_ops = 7

    def check_result(self, w_dygraph, w_static, conv_in, conv_out):
        self.assertTrue(np.array_equal(w_dygraph, w_static))
        self.assertTrue(
            np.array_equal(conv_out[:, 0:5, :, :, :], conv_in[:, :, 1:9, 1:9, 1:
                                                              9]))
        self.assertTrue(
            np.array_equal(conv_out[:, 5:10, :, :, :], conv_in[:, :, 1:9, 1:9,
                                                               1:9]))

    def test_error(self):
        self.config()
        with self.assertRaises(AssertionError):
            paddle.nn.Linear(10, 10, weight_attr=self.weight_attr)

        with self.assertRaises(AssertionError):
            paddle.nn.Conv2D(5, 9, (3, 3), weight_attr=self.weight_attr)


1027
if __name__ == '__main__':
H
hong 已提交
1028
    paddle.enable_static()
1029
    unittest.main()