io.py 40.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
import pickle
import warnings
21
import sys
W
WeiXin 已提交
22
import numpy as np
T
tianshuo78520a 已提交
23
import copyreg
24 25 26 27 28
import paddle

# deprecated module import
from paddle import fluid
from paddle.fluid import core
29 30
from paddle.fluid.io import _unpack_saved_dict, _pack_loaded_dict, _pickle_loads_mac
from paddle.fluid.io import _legacy_save as _legacy_static_save
31
from paddle.fluid.io import _open_file_buffer, _is_file_path, _is_memory_buffer
32

33
from paddle.fluid.framework import Variable, _varbase_creator, _dygraph_tracer, in_dygraph_mode, ParamBase, EagerParamBase, _current_expected_place, Program
34 35 36
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
37

38 39
__all__ = []

40 41 42 43 44

def _build_saved_state_dict(state_dict):
    save_dict = {}
    name_table = {}
    for key, value in state_dict.items():
45
        if isinstance(value, (Variable, core.VarBase, core.eager.Tensor)):
S
Steffy-zxf 已提交
46 47 48 49
            if value.type == core.VarDesc.VarType.VOCAB:
                save_dict[key] = value.value().get_map_tensor()
            else:
                save_dict[key] = value.numpy()
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
            name_table[key] = value.name
        else:
            save_dict[key] = value
    save_dict["StructuredToParameterName@@"] = name_table

    return save_dict


def _load_state_dict_from_save_inference_model(model_path, config):
    # 1. load program desc & construct _ProgramHolder
    programs = _construct_program_holders(model_path, config.model_filename)

    # 2. load layer parameters & buffers
    with fluid.dygraph.guard():
        persistable_var_dict = _construct_params_and_buffers(
65
            model_path, programs, config.params_filename, append_suffix=False)
66 67 68 69 70 71

        # 3. construct state_dict
        load_param_dict = dict()
        for var_name in persistable_var_dict:
            load_param_dict[var_name] = persistable_var_dict[var_name].numpy()

72 73 74
        # if *.info exists, we can recover structured_name
        var_info_filename = str(config.params_filename) + ".info"
        var_info_path = os.path.join(model_path, var_info_filename)
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
        if os.path.exists(var_info_path):
            with open(var_info_path, 'rb') as f:
                extra_var_info = pickle.load(f)
            structured_para_dict = dict()
            for var_name in load_param_dict:
                structured_name = extra_var_info[var_name].get(
                    'structured_name', None)
                assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                structured_para_dict[structured_name] = load_param_dict[
                    var_name]
            load_param_dict = structured_para_dict

    return load_param_dict


def _load_state_dict_from_save_params(model_path):
    # Try to load all the files in the directory in VarBase format, 
    # the file name is used as the name of VarBase
    load_var_list = []

    # 1. load file names
    var_name_list = []
    for root, _, files in os.walk(model_path):
        for filename in files:
            file_path = os.path.join(root, filename)
            tmp_var_name = os.path.relpath(file_path, model_path)
            var_name = tmp_var_name.replace("\\", "/")
            var_name_list.append(var_name)

    # 2. create and load VarBase
    with fluid.dygraph.guard():
        for name in var_name_list:
            new_var = _varbase_creator(name=name, persistable=True)
            _dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, name)})
            load_var_list.append(new_var)

    # 3. construct state_dict
    load_param_dict = dict()
    for var in load_var_list:
        load_param_dict[var.name] = var.numpy()

    return load_param_dict


123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
# NOTE(chenweihang): [ Handling of use cases of API paddle.load ]
# `paddle.load` may be used to load saved results of:
# 1. Expected cases:
#   - need [full filename] when loading
#       - paddle.save
#       - paddle.static.save
#       - paddle.fluid.save_dygraph
#   - need [prefix] when loading [compatible for paddle 2.x]
#       - paddle.jit.save
#       - paddle.static.save_inference_model
#   - need [directory] when loading [compatible for paddle 1.x]
#       - paddle.fluid.io.save_inference_model
#       - paddle.fluid.io.save_params/save_persistable
# 2. Error cases:
#   - no error case
def _build_load_path_and_config(path, config):
    # NOTE(chenweihang): If both [prefix save format] and [directory save format] exist,
    # raise error, avoid confusing behavior
    prefix_format_path = path + INFER_MODEL_SUFFIX
    prefix_format_exist = os.path.exists(prefix_format_path)
    directory_format_exist = os.path.isdir(path)
    if prefix_format_exist and directory_format_exist:
        raise ValueError(
            "The %s.pdmodel and %s directory exist at the same time, "
            "don't know which one to load, please make sure that the specified target "
            "of ``path`` is unique." % (path, path))
    elif not prefix_format_exist and not directory_format_exist:
        error_msg = "The ``path`` (%s) to load model not exists."
        # if current path is a prefix, and the path.pdparams or path.pdopt
        # is exist, users may want use `paddle.load` load the result of 
        # `fluid.save_dygraph`, we raise error here for users
        params_file_path = path + ".pdparams"
        opti_file_path = path + ".pdopt"
        if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
            error_msg += " If you want to load the results saved by `fluid.save_dygraph`, " \
                "please specify the full file name, not just the file name prefix. For " \
                "example, it should be written as `paddle.load('model.pdparams')` instead of " \
                "`paddle.load('model')`."
        raise ValueError(error_msg % path)
    else:
        if prefix_format_exist:
            file_prefix = os.path.basename(path)
            model_path = os.path.dirname(path)
            if config.model_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``model_filename`` config does "
                    "not take effect.")
            config.model_filename = file_prefix + INFER_MODEL_SUFFIX
            if config.params_filename is not None:
                warnings.warn(
                    "When loading the result saved with the "
                    "specified file prefix, the ``params_filename`` config does "
                    "not take effect.")
            config.params_filename = file_prefix + INFER_PARAMS_SUFFIX
        else:
            # Compatible with the old save_inference_model format
            model_path = path

    return model_path, config


def _parse_load_config(configs):
186 187 188
    supported_configs = [
        'model_filename', 'params_filename', 'keep_name_table', 'return_numpy'
    ]
189 190 191 192 193 194 195 196 197 198 199 200 201

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.load` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
202
    inner_config.return_numpy = configs.get('return_numpy', False)
203 204 205 206

    return inner_config


207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
def _parse_save_config(configs):
    supported_configs = ['use_binary_format', 'pickle_protocol']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.save` is not supported."
                % key)

    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.use_binary_format = configs.get('use_binary_format', False)
    inner_config.pickle_protocol = configs.get('pickle_protocol', None)

    return inner_config


def _pickle_save(obj, f, protocol):
    # TODO(weixin):add support for BytesIO.
    if not isinstance(protocol, int):
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
            type(protocol)))

    if protocol < 2 or protocol > 4:
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
                         format(protocol))

235
    def reduce_varbase(self):
236 237 238 239 240 241 242 243 244 245
        data = self.numpy()
        name = self.name

        return (tuple, ((name, data), ))

    def reduce_LoDTensor(self):
        data = np.array(self)

        return (eval, ('data', {'data': data}))

246
    def reduce_Layer(self):
247 248
        raise ValueError(
            "paddle do not support saving `paddle.nn.Layer` object.")
249 250 251 252 253 254 255

    dispatch_table_layer = dict()

    def create_layer_dispatch_table(layer):
        dispatch_table_layer[layer.__class__] = reduce_Layer
        return layer

J
Jiabin Yang 已提交
256
    _parse_every_object(obj, lambda v: isinstance(v, fluid.Layer),
257 258
                        create_layer_dispatch_table)

259 260
    def add_dispatch_table():
        # This is not a good method, because the pickle module has been modified.
261 262
        pickle.dispatch_table[core.VarBase] = reduce_varbase
        pickle.dispatch_table[ParamBase] = reduce_varbase
263 264
        pickle.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickle.dispatch_table[EagerParamBase] = reduce_varbase
265
        pickle.dispatch_table[core.LoDTensor] = reduce_LoDTensor
266
        pickle.dispatch_table.update(dispatch_table_layer)
267 268 269 270 271

    def pop_dispatch_table():
        pickle.dispatch_table.pop(core.VarBase)
        pickle.dispatch_table.pop(core.LoDTensor)
        pickle.dispatch_table.pop(ParamBase)
272 273
        pickle.dispatch_table.pop(core.eager.Tensor)
        pickle.dispatch_table.pop(EagerParamBase)
274 275
        for k in dispatch_table_layer:
            pickle.dispatch_table.pop(k)
276 277 278 279 280 281 282 283 284 285 286

    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
    if sys.platform == 'darwin' and sys.version_info.major == 3:
        add_dispatch_table()
        pickle_bytes = pickle.dumps(obj)
        pop_dispatch_table()

        max_bytes = 2**30
        for i in range(0, len(pickle_bytes), max_bytes):
            f.write(pickle_bytes[i:i + max_bytes])
    else:
T
tianshuo78520a 已提交
287 288
        pickler = pickle.Pickler(f, protocol)
        pickler.dispatch_table = copyreg.dispatch_table.copy()
289

T
tianshuo78520a 已提交
290 291 292
        pickler.dispatch_table[core.VarBase] = reduce_varbase
        pickler.dispatch_table[core.LoDTensor] = reduce_LoDTensor
        pickler.dispatch_table[ParamBase] = reduce_varbase
293 294
        pickler.dispatch_table[core.eager.Tensor] = reduce_varbase
        pickler.dispatch_table[EagerParamBase] = reduce_varbase
T
tianshuo78520a 已提交
295 296
        pickler.dispatch_table.update(dispatch_table_layer)
        pickler.dump(obj)
297 298


299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
def _contain_x(obj, condition_func):
    if isinstance(obj, core.SelectedRows):
        raise NotImplementedError(
            "`paddle.save` do not support saving 'SelectedRows'.")

    if condition_func(obj):
        return True
    elif type(obj) in (dict, collections.OrderedDict, list, tuple):
        if type(obj) in (dict, collections.OrderedDict):
            keys = list(obj.keys())
        else:
            keys = range(len(obj))
        flag = False
        for key in keys:
            flag |= _contain_x(obj[key], condition_func)
            if flag:
                return True
        return flag
    else:
318
        return False
319 320 321 322 323 324


def _is_state_dict(obj):
    if isinstance(obj, dict):

        def condition(obj):
J
Jiabin Yang 已提交
325
            return isinstance(obj, (fluid.Layer, Program, core.VarBase,
326 327
                                    core.eager.Tensor, core.LoDTensor,
                                    core.SelectedRows))
328 329 330 331 332 333 334 335 336

        # If the value of a dict is a core.VarBase/LoDTensor or a dict 
        # that does not contain a paddle type(Layer, Program, VarBase, LoDTensor, SelectedRows), 
        # the dict is considered to be a state_ dict.
        for key, value in obj.items():
            if isinstance(value, dict):
                for k, v in value.items():
                    if _contain_x(v, condition):
                        return False
337 338
            elif not isinstance(value, (core.VarBase, core.eager.Tensor,
                                        core.LoDTensor)):
339 340 341 342
                return False
        return True

    return False
343 344 345 346 347 348


def _transformed_from_varbase(obj):
    # In paddle2.1 version, VarBase is saved as tuple(tensor.name, tensor.numpy()).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, tuple) and len(obj) == 2:
T
tianshuo78520a 已提交
349
        name_types = str
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
        if isinstance(obj[0], name_types) and isinstance(obj[1], np.ndarray):
            return True
    return False


def _transformed_from_lodtensor(obj):
    # In paddle2.1 version, LoDTensor is saved as np.array(tensor).
    # When executing paddle.load, use this function to determine whether to restore to VarBase/LoDTensor.
    if isinstance(obj, np.ndarray):
        return True
    return False


def _to_LodTensor(ndarray):
    if not isinstance(ndarray, np.ndarray):
        raise TypeError(
            'Type of `ndarray` should be numpy.ndarray, but received {}.'.
            format(type(ndarray)))
    t = core.LoDTensor()
    place = _current_expected_place()
    t.set(ndarray, place)
    return t


def _tuple_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj[1]
    if in_dygraph_mode():
        t = paddle.to_tensor(obj[1])
        # This function does modify the name of return value.
        # Loading the same variable multiple times may cause the same name.
        t.name = obj[0]
        return t
    else:
        return _to_LodTensor(obj[1])


def _ndarray_to_tensor(obj, return_numpy):
    if return_numpy:
        return obj
    if in_dygraph_mode():
        return paddle.to_tensor(obj)
    else:
        return _to_LodTensor(obj)


396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
def _lod_tensor2varbase(tensor):
    return_var = _varbase_creator()
    return_var.value().get_tensor().set(tensor, _current_expected_place())
    return return_var


def _parse_every_object(obj, condition_func, convert_func):
    if condition_func(obj):
        return convert_func(obj)
    elif type(obj) in (dict, collections.OrderedDict, list):
        if type(obj) == list:
            keys = range(len(obj))
        else:
            keys = list(obj.keys())
        for key in keys:
            if condition_func(obj[key]):
                obj[key] = convert_func(obj[key])
            else:
                obj[key] = _parse_every_object(obj[key], condition_func,
                                               convert_func)
        return obj
    elif type(obj) == tuple:
        return tuple(
            _parse_every_object(list(obj), condition_func, convert_func))
    elif type(obj) == set:
        return set(_parse_every_object(list(obj), condition_func, convert_func))
    else:
423 424 425
        if isinstance(obj, collections.Iterable) and not isinstance(
                obj,
            (str, np.ndarray, core.VarBase, core.eager.Tensor, core.LoDTensor)):
426 427 428 429 430 431 432 433
            raise NotImplementedError(
                "The iteratable objects supported are tuple, list, dict, OrderedDict, string. But received {}.".
                format(type(obj)))
        return obj


def _parse_load_result(obj, return_numpy):
    def is_layer(obj):
J
Jiabin Yang 已提交
434
        return isinstance(obj, fluid.Layer)
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

    def parse_layer(obj):
        temp_dict = _parse_load_result(obj.__dict__, False)
        obj.__dict__.update(temp_dict)
        return obj

    if _contain_x(obj, is_layer):
        if not in_dygraph_mode():
            raise ValueError(
                "Layer can only be loaded in dynamic graph mode, but now in static graph mode."
            )

        _parse_every_object(obj, is_layer, parse_layer)

    def tuple_to_tensor(obj):
        return _tuple_to_tensor(obj, return_numpy=return_numpy)

    def ndarray_to_tensor(obj):
        return _ndarray_to_tensor(obj, return_numpy=return_numpy)

    # tuple(name, ndarry) was converted from varbase of paddle2.1, 
    # and all tuple(name, ndarry) are converted to tensor.
    if _contain_x(obj, _transformed_from_varbase):
        return _parse_every_object(obj, _transformed_from_varbase,
                                   tuple_to_tensor)
    # If there is no tuple(name, ndary), it is considered to be saved by paddle2.0 
    # or converted from LoDTensor, and all ndarrays are converted to tensor.
    else:
        return _parse_every_object(obj, _transformed_from_lodtensor,
                                   ndarray_to_tensor)


467 468 469
def _save_lod_tensor(tensor, file_name):
    if not tensor._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    if _is_file_path(file_name):
        _seek = core.save_lod_tensor(tensor, file_name)
        # '_seek' is the end position of this tensor in the file.

    elif _is_memory_buffer(file_name):
        tensor_bytes = core.save_lod_tensor_to_memory(tensor)

        with _open_file_buffer(file_name, 'wb') as f:
            f.write(tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
485 486 487 488 489
    return _seek


def _load_lod_tensor(file_name):
    temp_t = paddle.fluid.core.LoDTensor()
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
    if _is_file_path(file_name):
        # '_seek' is the end position of this tensor in the file.
        _seek = paddle.fluid.core.load_lod_tensor(temp_t, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            tensor_bytes = f.read()
            paddle.fluid.core.load_lod_tensor_from_memory(temp_t, tensor_bytes)
            _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

505 506 507 508 509 510
    return temp_t, _seek


def _save_selected_rows(selected_rows, file_name):
    if not selected_rows.get_tensor()._is_initialized():
        raise ValueError("The saved tensor is not initialized.")
511 512 513 514 515 516 517 518 519 520 521 522 523
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.save_selected_rows(selected_rows, file_name)

    elif _is_memory_buffer(file_name):
        selected_rows_bytes = core.save_selected_rows_to_memory(selected_rows)
        with _open_file_buffer(file_name, 'wb') as f:
            f.write(selected_rows_bytes)
            _seek = f.tell()
    else:
        raise NotImplementedError(
            'Only supports saving objects to file or BytesIO, but received {}'.
            format(type(file_name)))
524 525 526 527 528
    return _seek


def _load_selected_rows(file_name):
    temp_sr = core.SelectedRows()
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
    if _is_file_path(file_name):
        # '_seek' is the end position of this SelectedRows in the file.
        _seek = core.load_selected_rows(temp_sr, file_name)

    elif _is_memory_buffer(file_name):
        with _open_file_buffer(file_name, 'rb') as f:
            selected_rows_bytes = f.read()
            paddle.fluid.core.load_selected_rows_from_memory(
                temp_sr, selected_rows_bytes)
        _seek = f.tell()

    else:
        raise NotImplementedError(
            'Only supports load objects from file or BytesIO, but received {}'.
            format(type(file_name)))

545 546 547 548 549 550 551 552
    return temp_sr, _seek


def _save_binary_var(obj, path):
    if isinstance(obj, core.LoDTensor):
        _save_lod_tensor(obj, path)
    elif isinstance(obj, core.SelectedRows):
        _save_selected_rows(obj, path)
553
    elif isinstance(obj, (core.VarBase, core.eager.Tensor)):
554
        _save_lod_tensor(obj.value().get_tensor(), path)
555 556 557 558 559 560 561
    else:
        # Since the concept of 'Tensor' is only exposed to users, the error message can only contain tensor instead of 'LoDTensor' or 'SelectedRows'
        raise NotImplementedError(
            "When use_binary_format = True, `paddle.save`  expected Tensor, but received {}.".
            format(type(obj)))


562
def save(obj, path, protocol=4, **configs):
563 564 565 566
    '''
    Save an object to the specified path.
    
    .. note::
567
        Now supports saving ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
568 569

    .. note::
570 571 572 573 574 575 576
        Different from ``paddle.jit.save``, since the save result of ``paddle.save`` is a single file, 
        there is no need to distinguish multiple saved files by adding a suffix. The argument ``path`` 
        of ``paddle.save`` will be directly used as the saved file name instead of a prefix. 
        In order to unify the saved file name format, we recommend using the paddle standard suffix:
        1. for ``Layer.state_dict`` , recommend to use ``.pdparams`` ; 
        2. for ``Optimizer.state_dict`` , recommend to use ``.pdopt`` . 
        For specific examples, please refer to API code examples.
577 578 579
    
    Args:
        obj(Object) : The object to be saved.
580
        path(str|BytesIO) : The path/buffer of the object to be saved. 
581
          If saved in the current directory, the input path string will be used as the file name. 
582
        protocol(int, optional): The protocol version of pickle module must be greater than 1 and less than 5.
583
                                 Default: 4
584 585 586 587
        **configs(dict, optional): optional keyword arguments. The following options are currently supported:
          use_binary_format(bool): When the saved object is static graph variable, you can specify ``use_binary_for_var``. 
          If True, save the file in the c++ binary format when saving a single static graph variable; otherwise, save it in pickle format.
          Default: False
588 589 590 591 592 593 594

    Returns:
        None

    Examples:
        .. code-block:: python

595
            # example 1: dynamic graph
596 597 598
            import paddle
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
599 600

            # save state_dict of emb
601
            paddle.save(layer_state_dict, "emb.pdparams")
602 603

            scheduler = paddle.optimizer.lr.NoamDecay(
604 605 606 607 608
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
609 610

            # save state_dict of optimizer
611
            paddle.save(opt_state_dict, "adam.pdopt")
612 613 614
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")

W
WeiXin 已提交
615 616 617 618 619 620 621 622 623 624 625 626
            # example 2: Save multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)


            # example 3: static graph
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
642
                    tensor = var.get_value()
643 644 645 646 647 648 649 650 651
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
W
WeiXin 已提交
652 653 654 655 656 657 658 659 660 661 662 663

            # example 4: save program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
664

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
    
    '''
    if _is_file_path(path):
        # 1. input check
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")

        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
    elif not _is_memory_buffer(path):
        raise ValueError(
            "only supports saving objects to file and `BytesIO`, but got {}".
            format(type(path)))
697 698 699 700 701 702 703 704

    config = _parse_save_config(configs)

    if not isinstance(config.use_binary_format, bool):
        raise TypeError(
            "Type of `use_binary_format` should be bool, but received {}.".
            format(type(config.use_binary_format)))

705 706
    if config.use_binary_format:
        _save_binary_var(obj, path)
707
    else:
708 709 710 711 712 713
        # `protocol` need to be used, `pickle_protocol` is a deprecated arg.
        if config.pickle_protocol is not None:
            protocol = config.pickle_protocol
            warnings.warn(
                "'pickle_protocol' is a deprecated argument. Please use 'protocol' instead."
            )
714

715 716
        if isinstance(obj, Program):
            obj.desc.flush()
717
            with _open_file_buffer(path, "wb") as f:
718
                f.write(obj.desc.serialize_to_string())
719 720

        elif _is_state_dict(obj):
721 722 723 724 725
            if in_dygraph_mode():
                _legacy_save(obj, path, protocol)
            else:
                _legacy_static_save(obj, path, protocol)
        else:
726
            with _open_file_buffer(path, 'wb') as f:
727
                _pickle_save(obj, f, protocol)
728

729 730

def _legacy_save(obj, path, protocol=2):
731 732 733 734 735 736 737 738 739
    # 1. input check
    if not isinstance(obj, dict):
        raise NotImplementedError(
            "Now only supports save state_dict of Layer or Optimizer, "
            "expect dict, but received %s." % type(obj))

    if len(obj) == 0:
        warnings.warn("The input state dict is empty, no need to save.")

740
    if not isinstance(protocol, int):
W
WeiXin 已提交
741
        raise ValueError("The 'protocol' MUST be `int`, but received {}".format(
742
            type(protocol)))
W
WeiXin 已提交
743

744
    if protocol < 2 or protocol > 4:
W
WeiXin 已提交
745
        raise ValueError("Expected 1<'protocol'<5, but received protocol={}".
746
                         format(protocol))
W
WeiXin 已提交
747

748 749 750 751 752 753 754 755 756 757 758
    if _is_file_path(path):
        filename = os.path.basename(path)
        if filename == "":
            raise ValueError(
                "The input path MUST be format of dirname/filename "
                "[dirname\\filename in Windows system], but received "
                "filename is empty string.")
        # 2. save object
        dirname = os.path.dirname(path)
        if dirname and not os.path.exists(dirname):
            os.makedirs(dirname)
759

W
WeiXin 已提交
760 761 762
    if isinstance(obj, dict):
        saved_obj = _build_saved_state_dict(obj)

763
    saved_obj = _unpack_saved_dict(saved_obj, protocol)
764

765
    # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
766 767
    if _is_file_path(
            path) and sys.platform == 'darwin' and sys.version_info.major == 3:
768
        pickle_bytes = pickle.dumps(saved_obj, protocol=protocol)
769 770 771 772 773
        with open(path, 'wb') as f:
            max_bytes = 2**30
            for i in range(0, len(pickle_bytes), max_bytes):
                f.write(pickle_bytes[i:i + max_bytes])
    else:
774
        with _open_file_buffer(path, 'wb') as f:
775
            pickle.dump(saved_obj, f, protocol=protocol)
776 777


778
def load(path, **configs):
779 780 781 782
    '''
    Load an object can be used in paddle from specified path.

    .. note::
783
        Now supports loading ``state_dict`` of Layer/Optimizer, Tensor and nested structure containing Tensor, Program.
784 785

    .. note::
786 787 788 789
        In order to use the model parameters saved by paddle more efficiently, 
        ``paddle.load`` supports loading ``state_dict`` of Layer from the result of 
        other save APIs except ``paddle.save`` , but the argument ``path`` format is 
        different:
790 791 792 793 794 795 796 797 798 799 800 801
        1. loading from ``paddle.static.save`` or ``paddle.Model().save(training=True)`` ,  
        ``path`` needs to be a complete file name, such as ``model.pdparams`` or 
        ``model.pdopt`` ; 
        2. loading from ``paddle.jit.save`` or ``paddle.static.save_inference_model`` 
        or ``paddle.Model().save(training=False)`` , ``path`` need to be a file prefix, 
        such as ``model/mnist``, and ``paddle.load`` will get information from 
        ``mnist.pdmodel`` and ``mnist.pdiparams`` ;
        3. loading from paddle 1.x APIs ``paddle.fluid.io.save_inference_model`` or 
        ``paddle.fluid.io.save_params/save_persistables`` , ``path`` need to be a 
        directory, such as ``model`` and model is a directory.

    .. note::
802
        If you load ``state_dict`` from the saved result of static mode API such as 
803
        ``paddle.static.save`` or ``paddle.static.save_inference_model`` , 
804 805 806
        the structured variable name in dynamic mode will cannot be restored. 
        You need to set the argument ``use_structured_name=False`` when using 
        ``Layer.set_state_dict`` later.
807 808

    Args:
809
        path(str|BytesIO) : The path/buffer to load the target object. Generally, the path is the target 
810 811
            file path. When loading state_dict from the saved result of the API used to save 
            the inference model, the path may be a file prefix or directory.
812 813 814 815
        **configs (dict, optional): other load configuration options for compatibility. We do not 
            recommend using these configurations, they may be removed in the future. If not necessary, 
            DO NOT use them. Default None.
            The following options are currently supported:
816
            (1) model_filename (str): The inference model file name of the paddle 1.x 
817
            ``save_inference_model`` save format. Default file name is :code:`__model__` . 
818
            (2) params_filename (str): The persistable variables file name of the paddle 1.x 
819
            ``save_inference_model`` save format. No default file name, save variables separately 
820 821 822
            by default.            
            (3) return_numpy(bool): If specified as True, return tensor as numpy.ndarray, otherwise return tensor as paddle.Tensor. 
            Default False.
823 824 825 826 827 828 829

    Returns:
        Object(Object): a target object can be used in paddle

    Examples:
        .. code-block:: python

830 831
            # example 1: dynamic graph
            import paddle
832 833
            emb = paddle.nn.Embedding(10, 10)
            layer_state_dict = emb.state_dict()
834 835

            # save state_dict of emb
836
            paddle.save(layer_state_dict, "emb.pdparams")
837 838

            scheduler = paddle.optimizer.lr.NoamDecay(
839 840 841 842 843
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            opt_state_dict = adam.state_dict()
844 845

            # save state_dict of optimizer
846
            paddle.save(opt_state_dict, "adam.pdopt")
847 848
            # save weight of emb
            paddle.save(emb.weight, "emb.weight.pdtensor")
849

850
            # load state_dict of emb
851
            load_layer_state_dict = paddle.load("emb.pdparams")
852
            # load state_dict of optimizer
853
            load_opt_state_dict = paddle.load("adam.pdopt")
854 855 856 857
            # load weight of emb
            load_weight = paddle.load("emb.weight.pdtensor")


W
WeiXin 已提交
858 859 860 861 862 863 864 865 866 867 868 869 870
            # example 2: Load multiple state_dict at the same time
            from paddle import nn
            from paddle.optimizer import Adam

            layer = paddle.nn.Linear(3, 4)
            adam = Adam(learning_rate=0.001, parameters=layer.parameters())
            obj = {'model': layer.state_dict(), 'opt': adam.state_dict(), 'epoch': 100}
            path = 'example/model.pdparams'
            paddle.save(obj, path)
            obj_load = paddle.load(path)


            # example 3: static graph
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
            import paddle
            import paddle.static as static

            paddle.enable_static()

            # create network
            x = paddle.static.data(name="x", shape=[None, 224], dtype='float32')
            z = paddle.static.nn.fc(x, 10)

            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            prog = paddle.static.default_main_program()
            for var in prog.list_vars():
                if list(var.shape) == [224, 10]:
W
WeiXin 已提交
886
                    tensor = var.get_value()
887 888 889 890 891 892 893 894 895 896 897 898
                    break

            # save/load tensor
            path_tensor = 'temp/tensor.pdtensor'
            paddle.save(tensor, path_tensor)
            load_tensor = paddle.load(path_tensor)

            # save/load state_dict
            path_state_dict = 'temp/model.pdparams'
            paddle.save(prog.state_dict("param"), path_tensor)
            load_state_dict = paddle.load(path_tensor)

W
WeiXin 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914

            # example 4: load program
            import paddle

            paddle.enable_static()

            data = paddle.static.data(
                name='x_static_save', shape=(None, 224), dtype='float32')
            y_static = z = paddle.static.nn.fc(data, 10)
            main_program = paddle.static.default_main_program()
            path = "example/main_program.pdmodel"
            paddle.save(main_program, path)
            load_main = paddle.load(path)
            print(load_main)


915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
            # example 5: save object to memory
            from io import BytesIO
            import paddle
            from paddle.nn import Linear
            paddle.disable_static()

            linear = Linear(5, 10)
            state_dict = linear.state_dict()
            byio = BytesIO()
            paddle.save(state_dict, byio)
            tensor = paddle.randn([2, 3], dtype='float32')
            paddle.save(tensor, byio)
            byio.seek(0)
            # load state_dict
            dict_load = paddle.load(byio)

931
    '''
932

933
    if _is_memory_buffer(path) or os.path.isfile(path):
934
        config = _parse_load_config(configs)
T
tianshuo78520a 已提交
935
        exception_type = pickle.UnpicklingError
W
WeiXin 已提交
936
        try:
937
            with _open_file_buffer(path, 'rb') as f:
W
WeiXin 已提交
938
                # When value of dict is lager than 4GB ,there is a Bug on 'MAC python3'
939 940 941
                if _is_file_path(
                        path
                ) and sys.platform == 'darwin' and sys.version_info.major == 3:
W
WeiXin 已提交
942 943
                    load_result = _pickle_loads_mac(path, f)
                else:
T
tianshuo78520a 已提交
944
                    load_result = pickle.load(f, encoding='latin1')
945

W
WeiXin 已提交
946 947
                # TODO(weixin):If `obj` is any object, the judgment condition should be more precise.
                if isinstance(load_result, dict):
948
                    load_result = _pack_loaded_dict(load_result)
W
WeiXin 已提交
949 950 951 952
                    # paddle2.0: paddle.save/load
                    if "StructuredToParameterName@@" in load_result:

                        for key in load_result["StructuredToParameterName@@"]:
S
Steffy-zxf 已提交
953 954 955
                            if isinstance(load_result[key], np.ndarray):
                                load_result[key] = _ndarray_to_tensor(
                                    load_result[key], config.return_numpy)
W
WeiXin 已提交
956 957 958 959 960

                        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
                            del load_result["StructuredToParameterName@@"]
                    else:
                        # paddle2.1 static.save/load
961 962
                        load_result = _parse_load_result(load_result,
                                                         config.return_numpy)
963 964

                else:
965 966
                    load_result = _parse_load_result(load_result,
                                                     config.return_numpy)
967 968 969 970 971 972 973 974

        except exception_type as msg_pickle:
            try:
                tensor, _ = _load_selected_rows(path)
                return tensor
            except:
                try:
                    tensor, _ = _load_lod_tensor(path)
975 976 977 978 979 980
                    if config.return_numpy:
                        return np.array(tensor)
                    else:
                        if in_dygraph_mode():
                            return _lod_tensor2varbase(tensor)
                        return tensor
981 982
                except:
                    try:
983
                        with _open_file_buffer(path, "rb") as f:
984 985 986 987 988 989 990 991
                            program_desc_str = f.read()
                            program = Program.parse_from_string(
                                program_desc_str)
                            return program
                    except:
                        raise ValueError(
                            "`paddle.load` can not parse the file:{}.".format(
                                path))
992 993 994 995 996 997 998 999

    else:
        load_result = _legacy_load(path, **configs)

    return load_result


def _legacy_load(path, **configs):
1000
    load_result = None
1001 1002
    config = _parse_load_config(configs)

1003
    if os.path.isfile(path) or _is_memory_buffer(path):
1004
        # we think path is file means this file is created by paddle.save
1005
        with _open_file_buffer(path, 'rb') as f:
T
tianshuo78520a 已提交
1006
            load_result = pickle.load(f, encoding='latin1')
1007
        load_result = _pack_loaded_dict(load_result)
1008 1009
        if not config.keep_name_table and "StructuredToParameterName@@" in load_result:
            del load_result["StructuredToParameterName@@"]
1010 1011 1012
    else:
        # file prefix and directory are compatible cases
        model_path, config = _build_load_path_and_config(path, config)
1013 1014 1015 1016 1017
        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
1018
        model_file_path = os.path.join(model_path, model_filename)
1019 1020 1021 1022 1023 1024 1025 1026 1027

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 
1028
            load_result = _load_state_dict_from_save_inference_model(model_path,
1029 1030 1031 1032 1033 1034 1035 1036
                                                                     config)
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
            # paddle.static.load_program_state in this case
1037
            load_result = _load_state_dict_from_save_params(model_path)
1038 1039

    return load_result