checkpoint.py 11.6 KB
Newer Older
1
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import collections
19
import functools
20
from ..framework import Variable, default_main_program, in_dygraph_mode, dygraph_only, Parameter, ParamBase, _varbase_creator, _dygraph_tracer, EagerParamBase
21 22 23
import pickle
from . import learning_rate_scheduler
import warnings
H
hong 已提交
24
from .. import core
25
from .base import guard
26 27
from paddle.fluid.dygraph.jit import _SaveLoadConfig
from paddle.fluid.dygraph.io import _construct_program_holders, _construct_params_and_buffers
28

H
hong 已提交
29 30 31 32
__all__ = [
    'save_dygraph',
    'load_dygraph',
]
33 34


35 36 37 38 39 40 41 42 43
def _parse_load_config(configs):
    supported_configs = ['model_filename', 'params_filename', 'keep_name_table']

    # input check
    for key in configs:
        if key not in supported_configs:
            raise ValueError(
                "The additional config (%s) of `paddle.fluid.load_dygraph` is not supported."
                % (key))
44

45 46 47 48 49
    # construct inner config
    inner_config = _SaveLoadConfig()
    inner_config.model_filename = configs.get('model_filename', None)
    inner_config.params_filename = configs.get('params_filename', None)
    inner_config.keep_name_table = configs.get('keep_name_table', None)
50

51
    return inner_config
52 53


H
hong 已提交
54 55 56
@dygraph_only
def save_dygraph(state_dict, model_path):
    '''
57 58
    :api_attr: imperative

H
hong 已提交
59 60 61 62
    Save Layer's state_dict to disk. This will generate a file with suffix ".pdparams"
    
    The state_dict is get from Layers.state_dict function
    
63
    Args:
H
hong 已提交
64 65
        state_dict(dict) : The state dict to be saved.
        model_path(str) : the file prefix to save the state_dict. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised
66 67

    Returns:
L
lujun 已提交
68
        None
69 70

    Examples:
H
hong 已提交
71 72 73 74 75
        .. code-block:: python

            import paddle.fluid as fluid

            with fluid.dygraph.guard():
76
                emb = fluid.dygraph.Embedding([10, 10])
H
hong 已提交
77 78 79 80

                state_dict = emb.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

81 82
                adam = fluid.optimizer.Adam( learning_rate = fluid.layers.noam_decay( 100, 10000),
                                             parameter_list = emb.parameters() )
H
hong 已提交
83 84 85 86 87 88 89

                state_dict = adam.state_dict()
                fluid.save_dygraph( state_dict, "paddle_dy")

    '''

    base_name = os.path.basename(model_path)
90
    assert base_name != "", "The input model_path MUST be format of dirname/filename [dirname\\filename in Windows system], but received filename is empty string."
H
hong 已提交
91 92 93 94

    suffix = ".pdparams"
    assert len(state_dict) > 0, "state_dict is empty, no need to save"

95
    param_num = 0
H
hong 已提交
96
    for k, v in state_dict.items():
97
        if isinstance(v, (ParamBase, EagerParamBase)):
98 99 100 101
            param_num += 1

    if param_num == 0:
        suffix = ".pdopt"
H
hong 已提交
102

H
hong 已提交
103 104 105
    model_dict = {}
    name_table = {}
    for k, v in state_dict.items():
106
        if isinstance(v, (Variable, core.VarBase, core.eager.Tensor)):
H
hong 已提交
107
            model_dict[k] = v.numpy()
108
            name_table[k] = v.name
H
hong 已提交
109 110 111 112
        else:
            model_dict[k] = v
    model_dict["StructuredToParameterName@@"] = name_table

113 114 115 116 117 118
    file_name = model_path + suffix
    dir_name = os.path.dirname(file_name)
    if dir_name and not os.path.exists(dir_name):
        os.makedirs(dir_name)

    with open(file_name, 'wb') as f:
119
        pickle.dump(model_dict, f, protocol=2)
H
hong 已提交
120 121


122 123
# NOTE(chenweihang): load_dygraph will deprecated in future, we don't 
# support new loading features for it
124 125
# TODO(qingqing01): remove dygraph_only to support loading static model.
# maybe need to unify the loading interface after 2.0 API is ready.
126
# @dygraph_only
127
def load_dygraph(model_path, **configs):
H
hong 已提交
128
    '''
129 130
    :api_attr: imperative
    
131 132 133 134
    Load parameter state dict from disk.

    .. note::
        Due to some historical reasons, if you load ``state_dict`` from the saved 
135
        result of `paddle.static.save_inference_model`, the structured variable name 
136 137
        will cannot be restored. You need to set the argument `use_structured_name=False` 
        when using `Layer.set_state_dict` later.
H
hong 已提交
138 139

    Args:
140 141
        model_path(str) : The file prefix store the state_dict. 
            (The path should Not contain suffix '.pdparams') 
142
        **configs (dict, optional): Other load configuration options for compatibility. We do not 
143 144
            recommend using these configurations, if not necessary, DO NOT use them. Default None.
            The following options are currently supported:
145
            (1) model_filename (str): The inference model file name of the paddle 1.x ``save_inference_model`` 
146
            save format. Default file name is :code:`__model__` . 
147
            (2) params_filename (str): The persistable variables file name of the paddle 1.x ``save_inference_model`` 
148
            save format. No default file name, save variables separately by default.
H
hong 已提交
149 150 151

    Returns:
        state_dict(dict) : the dict store the state_dict
L
lujun 已提交
152

H
hong 已提交
153
    Examples:
154
        .. code-block:: python
L
lujun 已提交
155

156
            import paddle
157 158
            import paddle.fluid as fluid

159
            paddle.disable_static()
H
hong 已提交
160

161
            emb = paddle.nn.Embedding(10, 10)
H
hong 已提交
162

163
            state_dict = emb.state_dict()
164
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
165

166
            scheduler = paddle.optimizer.lr.NoamDecay(	
167 168 169 170 171
                d_model=0.01, warmup_steps=100, verbose=True)
            adam = paddle.optimizer.Adam(
                learning_rate=scheduler,
                parameters=emb.parameters())
            state_dict = adam.state_dict()
172
            fluid.save_dygraph(state_dict, "paddle_dy")
H
hong 已提交
173

174
            para_state_dict, opti_state_dict = fluid.load_dygraph("paddle_dy")
175 176
    '''
    # deal with argument `model_path`
177 178 179 180 181 182
    model_prefix = model_path
    if model_prefix.endswith(".pdparams"):
        model_prefix = model_prefix[:-9]
    elif model_prefix.endswith(".pdopt"):
        model_prefix = model_prefix[:-6]

183
    para_dict = None
H
hong 已提交
184
    opti_dict = None
185
    params_file_path = model_prefix + ".pdparams"
186
    opti_file_path = model_prefix + ".pdopt"
187

188
    # deal with argument `config`
189
    config = _parse_load_config(configs)
190

191
    if os.path.exists(params_file_path) or os.path.exists(opti_file_path):
192
        # Load state dict by `save_dygraph` save format
M
MRXLT 已提交
193
        para_dict = {}
194 195
        if os.path.exists(params_file_path):
            with open(params_file_path, 'rb') as f:
T
tianshuo78520a 已提交
196
                para_dict = pickle.load(f, encoding='latin1')
197

198
        if not config.keep_name_table and "StructuredToParameterName@@" in para_dict:
199 200 201 202
            del para_dict["StructuredToParameterName@@"]

        if os.path.exists(opti_file_path):
            with open(opti_file_path, 'rb') as f:
T
tianshuo78520a 已提交
203
                opti_dict = pickle.load(f, encoding='latin1')
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    else:
        # check model path
        if not os.path.isdir(model_prefix):
            raise ValueError("Model saved directory '%s' is not exists." %
                             model_prefix)

        # check whether model file exists
        if config.model_filename is None:
            model_filename = '__model__'
        else:
            model_filename = config.model_filename
        model_file_path = os.path.join(model_path, model_filename)

        if os.path.exists(model_file_path):
            # Load state dict by `jit.save/io.save_inference_model` save format
            # NOTE(chenweihang): [ Compatibility of save_inference_model save format ]
            # The model saved by `save_inference_model` does not completely correspond to 
            # the information required by the `state_dict` under the dygraph. 
            # `save_inference_model` not save structured name, we need to remind 
            # the user to configure the `use_structured_name` argument when `set_state_dict`
            # NOTE(chenweihang): `jit.save` doesn't save optimizer state 

            # 1. load program desc & construct _ProgramHolder
            programs = _construct_program_holders(model_path,
                                                  config.model_filename)

            # 2. load layer parameters & buffers
            # NOTE: using fluid.dygraph.guard() here will cause import error in py2
            with guard():
                persistable_var_dict = _construct_params_and_buffers(
                    model_prefix,
                    programs,
                    config.params_filename,
                    append_suffix=False)

                # 3. construct state_dict
                para_dict = dict()
                for var_name in persistable_var_dict:
                    para_dict[var_name] = persistable_var_dict[var_name].numpy()

244 245 246
                # if *.info exists, we can recover structured_name
                var_info_filename = str(config.params_filename) + ".info"
                var_info_path = os.path.join(model_prefix, var_info_filename)
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                if os.path.exists(var_info_path):
                    with open(var_info_path, 'rb') as f:
                        extra_var_info = pickle.load(f)
                    structured_para_dict = dict()
                    for var_name in para_dict:
                        structured_name = extra_var_info[var_name].get(
                            'structured_name', None)
                        assert structured_name is not None, "Cannot find saved variable (%s)'s structured name in saved model." % var_name
                        structured_para_dict[structured_name] = para_dict[
                            var_name]
                    para_dict = structured_para_dict
        else:
            # load state dict by `io.save_params/persistables` save format
            # TODO(chenweihang): [ Now only supports loading parameters seperately ]
            # If users save all parameters as one file, the [ variable.name -> variable ]
            # mapping info will lost, so users need to give variable list, but users build 
            # variable list in dygraph mode is difficult, we recommend users to use
264
            # paddle.static.load_program_state in this case
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

            # Try to load all the files in the directory in VarBase format, 
            # the file name is used as the name of VarBase
            load_var_list = []

            # 1. load file names
            var_name_list = []
            for root, _, files in os.walk(model_path):
                for filename in files:
                    file_path = os.path.join(root, filename)
                    tmp_var_name = os.path.relpath(file_path, model_path)
                    var_name = tmp_var_name.replace("\\", "/")
                    var_name_list.append(var_name)

            # 2. create and load VarBase
            with guard():
                for name in var_name_list:
                    new_var = _varbase_creator(name=name, persistable=True)
                    _dygraph_tracer().trace_op(
                        type='load',
                        inputs={},
                        outputs={'Out': new_var},
                        attrs={'file_path': os.path.join(model_path, name)})
                    load_var_list.append(new_var)

            # 3. construct state_dict
            para_dict = dict()
            for var in load_var_list:
                para_dict[var.name] = var.numpy()
H
hong 已提交
294 295

    return para_dict, opti_dict