arg_min_max_op_base.h 8.3 KB
Newer Older
S
sneaxiy 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
yuyang18 已提交
16
#include <string>
S
sneaxiy 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
#include <type_traits>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace operators {

enum ArgMinMaxType { kArgMin, kArgMax };

template <typename DeviceContext, typename T, typename Tout, int64_t Rank,
          ArgMinMaxType argMinMaxValue>
struct ArgMinMaxFunctor {};

#define DECLARE_ARG_MIN_MAX_FUNCTOR(eigen_op_type, enum_argminmax_value)      \
  template <typename DeviceContext, typename T, typename Tout, int64_t Rank>  \
  struct ArgMinMaxFunctor<DeviceContext, T, Tout, Rank,                       \
                          enum_argminmax_value> {                             \
    void operator()(const DeviceContext& ctx, const framework::LoDTensor& in, \
W
wawltor 已提交
41 42 43
                    framework::LoDTensor* out, framework::DDim x_dims,        \
                    int64_t axis, bool keepdims) {                            \
      auto in_eigen = framework::EigenTensor<T, Rank>::From(in, x_dims);      \
44 45 46 47 48 49 50 51 52
      if (keepdims) {                                                         \
        auto out_eigen = framework::EigenTensor<Tout, Rank>::From(*out);      \
        out_eigen.device(*(ctx.eigen_device())) =                             \
            in_eigen.eigen_op_type(axis).template cast<Tout>();               \
      } else {                                                                \
        auto out_eigen = framework::EigenTensor<Tout, Rank - 1>::From(*out);  \
        out_eigen.device(*(ctx.eigen_device())) =                             \
            in_eigen.eigen_op_type(axis).template cast<Tout>();               \
      }                                                                       \
S
sneaxiy 已提交
53 54 55 56 57 58
    }                                                                         \
  }

DECLARE_ARG_MIN_MAX_FUNCTOR(argmin, ArgMinMaxType::kArgMin);
DECLARE_ARG_MIN_MAX_FUNCTOR(argmax, ArgMinMaxType::kArgMax);

59 60 61 62 63 64 65 66
template <typename DeviceContext, typename T, ArgMinMaxType EnumArgMinMaxValue>
struct VisitDataArgMinMaxFunctor {
  const framework::ExecutionContext& ctx;

  explicit VisitDataArgMinMaxFunctor(const framework::ExecutionContext& ctx)
      : ctx(ctx) {}
  template <typename Tout>
  void apply() const {
S
sneaxiy 已提交
67 68
    auto& x = *(ctx.Input<framework::LoDTensor>("X"));
    auto& out = *(ctx.Output<framework::LoDTensor>("Out"));
69
    out.template mutable_data<Tout>(ctx.GetPlace());
S
sneaxiy 已提交
70
    auto axis = ctx.Attr<int64_t>("axis");
71
    auto keepdims = ctx.Attr<bool>("keepdims");
W
wawltor 已提交
72 73 74 75 76 77 78 79 80 81 82 83
    const bool& flatten = ctx.Attr<bool>("flatten");

    // if flatten, will construct the new dims for the cacluate
    framework::DDim x_dims;
    if (flatten) {
      x_dims = framework::make_ddim({x.numel()});
      // if flatten, the axis just as 0
      axis = 0;
    } else {
      x_dims = x.dims();
      if (axis < 0) axis += x_dims.size();
    }
S
sneaxiy 已提交
84 85 86 87 88
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

#define CALL_ARG_MINMAX_FUNCTOR(rank)                                \
  ArgMinMaxFunctor<DeviceContext, T, Tout, rank, EnumArgMinMaxValue> \
      functor##rank;                                                 \
W
wawltor 已提交
89
  functor##rank(dev_ctx, x, &out, x_dims, axis, keepdims)
S
sneaxiy 已提交
90

W
wawltor 已提交
91
    switch (x_dims.size()) {
S
sneaxiy 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
      case 1:
        CALL_ARG_MINMAX_FUNCTOR(1);
        break;
      case 2:
        CALL_ARG_MINMAX_FUNCTOR(2);
        break;
      case 3:
        CALL_ARG_MINMAX_FUNCTOR(3);
        break;
      case 4:
        CALL_ARG_MINMAX_FUNCTOR(4);
        break;
      case 5:
        CALL_ARG_MINMAX_FUNCTOR(5);
        break;
      case 6:
        CALL_ARG_MINMAX_FUNCTOR(6);
        break;
      default:
        PADDLE_THROW(
            "%s operator doesn't supports tensors whose ranks are greater "
            "than 6.",
            (EnumArgMinMaxValue == kArgMin ? "argmin" : "argmax"));
        break;
Y
yuyang18 已提交
116
#undef CALL_ARG_MINMAX_FUNCTOR
S
sneaxiy 已提交
117 118 119 120
    }
  }
};

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
template <typename DeviceContext, typename T, ArgMinMaxType EnumArgMinMaxValue>
class ArgMinMaxKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dtype = ctx.Attr<int>("dtype");
    if (dtype < 0) {
      framework::VisitDataType(
          static_cast<framework::proto::VarType::Type>(
              framework::proto::VarType::INT64),
          VisitDataArgMinMaxFunctor<DeviceContext, T, EnumArgMinMaxValue>(ctx));
      return;
    }
    framework::VisitDataType(
        static_cast<framework::proto::VarType::Type>(dtype),
        VisitDataArgMinMaxFunctor<DeviceContext, T, EnumArgMinMaxValue>(ctx));
  }
};

Y
yuyang18 已提交
139
template <typename DeviceContext, typename T>
140
using ArgMinKernel = ArgMinMaxKernel<DeviceContext, T, ArgMinMaxType::kArgMin>;
S
sneaxiy 已提交
141

Y
yuyang18 已提交
142
template <typename DeviceContext, typename T>
143
using ArgMaxKernel = ArgMinMaxKernel<DeviceContext, T, ArgMinMaxType::kArgMax>;
S
sneaxiy 已提交
144

Y
yuyang18 已提交
145
class ArgMinMaxOp : public framework::OperatorWithKernel {
S
sneaxiy 已提交
146 147 148 149
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
150 151
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "arg_min_max");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "arg_min_max");
S
sneaxiy 已提交
152 153
    const auto& x_dims = ctx->GetInputDim("X");
    int64_t axis = ctx->Attrs().Get<int64_t>("axis");
154
    bool keepdims = ctx->Attrs().Get<bool>("keepdims");
W
wawltor 已提交
155
    const bool& flatten = ctx->Attrs().Get<bool>("flatten");
156

157 158 159 160 161 162 163 164 165
    PADDLE_ENFORCE_GE(axis, -x_dims.size(),
                      platform::errors::InvalidArgument(
                          "'axis'(%d) must be greater than or equal to"
                          " -Rank(X)(%d).",
                          axis, -x_dims.size()));
    PADDLE_ENFORCE_LT(
        axis, x_dims.size(),
        platform::errors::InvalidArgument(
            "'axis'(%d) must be less than Rank(X)(%d).", axis, x_dims.size()));
S
sneaxiy 已提交
166 167

    std::vector<int64_t> vec;
W
wawltor 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
    if (flatten) {
      // if is flatten, will return the only on element
      if (keepdims) {
        vec.emplace_back(static_cast<int64_t>(1));
      }
    } else {
      auto x_rank = x_dims.size();
      if (axis < 0) axis += x_rank;
      for (int64_t i = 0; i < axis; i++) vec.emplace_back(x_dims[i]);
      if (keepdims) {
        vec.emplace_back(static_cast<int64_t>(1));
      }
      for (int64_t i = axis + 1; i < x_rank; i++) vec.emplace_back(x_dims[i]);
181
    }
S
sneaxiy 已提交
182 183
    ctx->SetOutputDim("Out", framework::make_ddim(vec));
  }
Y
yuyang18 已提交
184
};
S
sneaxiy 已提交
185 186 187 188 189 190 191 192 193 194 195

class BaseArgMinMaxOpMaker : public framework::OpProtoAndCheckerMaker {
 protected:
  virtual const char* OpName() const = 0;
  virtual const char* Name() const = 0;

 public:
  void Make() override {
    AddInput("X", "Input tensor.");
    AddOutput("Out", "Output tensor.");
    AddAttr<int64_t>("axis", "The axis in which to compute the arg indics.");
196 197
    AddAttr<bool>("keepdims", "Keep the dim that to reduce.").SetDefault(false);
    AddAttr<int>("dtype", "Keep the dim that to reduce.").SetDefault(-1);
W
wawltor 已提交
198 199 200
    AddAttr<bool>("flatten",
                  "Flatten the input value, and search the min or max indices")
        .SetDefault(false);
Y
yuyang18 已提交
201 202
    AddComment(string::Sprintf(R"DOC(
      %s Operator.
S
sneaxiy 已提交
203

Y
yuyang18 已提交
204 205
      Computes the indices of the %s elements of the input tensor's element
      along the provided axis.
S
sneaxiy 已提交
206
)DOC",
Y
yuyang18 已提交
207
                               OpName(), Name()));
S
sneaxiy 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  }
};

class ArgMinOpMaker : public BaseArgMinMaxOpMaker {
 protected:
  const char* OpName() const override { return "ArgMin"; }
  const char* Name() const override { return "min"; }
};

class ArgMaxOpMaker : public BaseArgMinMaxOpMaker {
 protected:
  const char* OpName() const override { return "ArgMax"; }
  const char* Name() const override { return "max"; }
};
}  // namespace operators
}  // namespace paddle