operator.h 12.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22
#include <unordered_map>
#include <vector>
D
dzhwinter 已提交
23 24
#define GLOG_NO_ABBREVIATED_SEVERITIES
#define GOOGLE_GLOG_DLL_DECL
Q
Qiao Longfei 已提交
25

Y
Yu Yang 已提交
26
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
27 28 29 30 31 32 33 34 35 36 37
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
38 39 40 41

namespace paddle {
namespace framework {

42
/// If a variable is a empty variable, that name will be used.
43
constexpr char kEmptyVarName[] = "@EMPTY@";
44 45 46

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
47
constexpr char kTempVarName[] = "@TEMP@";
48 49 50 51

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
52
constexpr char kGradVarSuffix[] = "@GRAD";
53 54

/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

D
dzhwinter 已提交
57
// define some kernel priority
58
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
59 60
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

61 62 63 64
inline std::string GradVarName(const std::string& var_name) {
  return var_name + kGradVarSuffix;
}

Q
qiaolongfei 已提交
65
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduozh 已提交
66
const Tensor* GetTensorFromVar(Variable* var);
Q
qiaolongfei 已提交
67

Q
Qiao Longfei 已提交
68
class OperatorBase;
69
class ExecutionContext;
70

Q
Qiao Longfei 已提交
71 72 73 74 75 76 77 78
/**
 * OperatorBase has the basic element that Net will call to do computation.
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
79 80
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
81

Q
Qiao Longfei 已提交
82 83
  virtual ~OperatorBase() {}

84
  /// Executor will call this interface function to Run an op.
85 86
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
87

T
typhoonzero 已提交
88 89 90
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

91 92 93
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
94

95 96
  virtual bool SupportGPU() const { return false; }

97 98 99 100 101 102 103 104 105
  const std::string& Type() const { return type_; }

  template <typename T>
  inline const T& Attr(const std::string& name) const {
    PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
                   name);
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
106

Y
Yu Yang 已提交
107 108
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
109

110
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
111
  //! Get a input with argument's name described in `op_proto`
112
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
113
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
114
  const std::vector<std::string>& Inputs(const std::string& name) const;
115
  //! Get all inputs variable names
Q
qijun 已提交
116 117
  std::vector<std::string> InputVars() const;

118
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
119
  //! Get a output with argument's name described in `op_proto`
120
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
121 122
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
123
  const std::vector<std::string>& Outputs(const std::string& name) const;
124
  //! Get all outputs variable names
Y
Yu Yang 已提交
125
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
126

Q
qiaolongfei 已提交
127
 protected:
Q
Qiao Longfei 已提交
128
  std::string type_;
D
dongzhihong 已提交
129
  // NOTE: in case of OpGrad, inputs_ contains:
130
  // I (Inputs)
D
dongzhihong 已提交
131 132
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
133
  VariableNameMap inputs_;
Y
Yu Yang 已提交
134

D
dongzhihong 已提交
135 136
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
137
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
138
  AttributeMap attrs_;
139 140 141 142

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
143 144
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
145 146
};

147
class ExecutionContext {
Y
Yan Chunwei 已提交
148
 public:
149 150 151
  ExecutionContext(const OperatorBase& op, const Scope& scope,
                   const platform::DeviceContext& device_context)
      : op_(op), scope_(scope), device_context_(device_context) {}
152

Q
qiaolongfei 已提交
153 154 155 156
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
157
  template <typename T>
Y
Yu Yang 已提交
158 159
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
160 161
  }

162
  bool HasInput(const std::string& name) const;
163

164
  bool HasOutput(const std::string& name) const;
165

Y
Yu Yang 已提交
166
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
167
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
168 169
  }

Y
Yu Yang 已提交
170
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
171
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
172 173
  }

174
  const Variable* InputVar(const std::string& name) const {
175
    auto ipt = op_.Input(name);
Y
Yu Yang 已提交
176
    return ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
Y
Yan Chunwei 已提交
177 178
  }

179
  Variable* OutputVar(const std::string& name) const {
180
    auto opt = op_.Output(name);
Y
Yu Yang 已提交
181
    return opt == kEmptyVarName ? nullptr : scope_.FindVar(opt);
Y
Yan Chunwei 已提交
182 183
  }

184 185
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
Y
Yan Chunwei 已提交
186 187
    auto names = op_.Inputs(name);
    std::vector<const Variable*> res;
188
    res.reserve(names.size());
189 190
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
191 192
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
193
                   });
Y
Yan Chunwei 已提交
194 195 196
    return res;
  }

197
  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
198
    auto names = op_.Outputs(name);
199
    std::vector<Variable*> res;
200
    res.reserve(names.size());
201 202
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
203 204
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
205
                   });
Y
Yan Chunwei 已提交
206 207 208
    return res;
  }

209 210
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
211
    auto* var = InputVar(name);
212
    return var == nullptr ? nullptr : &var->Get<T>();
213 214 215 216
  }

  template <typename T>
  T* Output(const std::string& name) const {
217
    auto var = OutputVar(name);
218
    return var == nullptr ? nullptr : var->GetMutable<T>();
219 220 221 222 223 224 225 226
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
227
                   [&](const std::string& sub_name) {
228
                     auto var = scope_.FindVar(sub_name);
229
                     return var == nullptr ? nullptr : &var->Get<T>();
230 231 232 233 234
                   });
    return res;
  }

  template <typename T>
235
  std::vector<T*> MultiOutput(const std::string& name) const {
236
    auto names = op_.Outputs(name);
237
    std::vector<T*> res;
238 239
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
240
                   [&](const std::string& sub_name) {
241
                     auto var = scope_.FindVar(sub_name);
242
                     return var == nullptr ? nullptr : var->GetMutable<T>();
243 244 245 246
                   });
    return res;
  }

247
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
248

Q
QI JUN 已提交
249 250 251 252 253
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

254
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
255
    return device_context_;
Q
qijun 已提交
256
  }
Q
qijun 已提交
257

Q
QI JUN 已提交
258 259 260 261 262 263 264 265
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
266
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
267 268 269
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
270

D
dzhwinter 已提交
271
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
272 273 274 275
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

276
 private:
277 278
  const OperatorBase& op_;
  const Scope& scope_;
279
  const platform::DeviceContext& device_context_;
Q
Qiao Longfei 已提交
280 281
};

282 283 284 285 286 287 288 289 290 291 292 293 294 295
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
296
class OpKernelBase {
Q
qijun 已提交
297
 public:
Q
qijun 已提交
298
  /**
299
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
300 301
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
302
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
303 304
   */

305
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
306

Y
Yu Yang 已提交
307 308 309 310 311 312 313
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
314 315
};

Y
Yu Yang 已提交
316 317
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
318
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
319
  using OpKernelMap =
Y
yuyang18 已提交
320
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
321

Y
Yu Yang 已提交
322 323
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
324 325
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
326 327 328 329
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
330
  }
Y
Yan Chunwei 已提交
331

332
  bool SupportGPU() const override {
Y
Yu Yang 已提交
333 334 335 336 337
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
338 339
  }

340 341 342
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
343

Q
qiaolongfei 已提交
344
 protected:
345 346 347 348
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
349 350

 private:
351
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
352
  // same.
353
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
354
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
355 356 357 358 359 360 361 362 363 364 365 366 367 368

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
  Scope* TryTransferData(
      const Scope& scope, const OpKernelType& expected_kernel_key,
      std::vector<std::string>* transfered_inplace_vars) const;

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
369 370
};

Y
Yu Yang 已提交
371 372
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
373 374
}  // namespace framework
}  // namespace paddle