compiler.py 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import multiprocessing
import os
import six
X
polish  
Xin Pan 已提交
18
import sys
19
from .. import compat as cpt
X
Xin Pan 已提交
20
from . import framework
S
sneaxiy 已提交
21
from .framework import cuda_places, cpu_places
22 23 24

from . import core

X
Xin Pan 已提交
25 26
__all__ = ['CompiledProgram', 'ExecutionStrategy', 'BuildStrategy']

27 28
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
F
flame 已提交
29 30
InferNativeConfig = core.NativeConfig
InferAnalysisConfig = core.AnalysisConfig
31 32 33 34 35 36 37 38


def _place_obj(place):
    p = core.Place()
    p.set_place(place)
    return p


X
polish  
Xin Pan 已提交
39
class CompiledProgram(object):
X
polish  
Xin Pan 已提交
40
    """
X
Xin Pan 已提交
41
    Compiles to Graph for execution.
X
polish  
Xin Pan 已提交
42

X
Xin Pan 已提交
43 44 45 46
    1. Users first create the program with layers.
    2. Optionally, users use CompiledProgram to optimize the program before run.
    3. The original program or CompiledProgram is run by executor.

X
polish  
Xin Pan 已提交
47 48 49 50 51 52 53 54
    The CompiledProgram is used to transform a program for various
    optimizations, for example.
      * Pre-compute some logic once so that each run is faster.
      * Transform the program so that it can run in multiple devices.
      * TODO: transform the program for optimized inference or distributed
              training.

    Example:
X
Xin Pan 已提交
55
        .. code-block:: python
X
Xin Pan 已提交
56
            place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
X
Xin Pan 已提交
57 58 59 60 61 62 63 64
            exe = fluid.Executor(place)
            exe.run(startup)
            compiled_prog = compiler.CompiledProgram(main).with_data_parallel(
                loss_name=loss.name)
            for i in range(5):
                test_loss, = exe.run(compiled_prog,
                                     feed=feed_dict,
                                     fetch_list=[loss.name])
X
polish  
Xin Pan 已提交
65 66

    Args:
X
Xin Pan 已提交
67 68 69 70 71
        program_or_graph (Graph|Program): If it's Program, it will be first
            lowered to a graph for further optimizations. If it's a graph
            (potentially optimized before), it will be directly used for
            further optimizations. Note: graph is only supported when compiled
            with with_data_parallel option.
X
polish  
Xin Pan 已提交
72 73
    """

X
Xin Pan 已提交
74 75 76 77 78 79 80 81 82 83 84 85
    def __init__(self, program_or_graph):
        if isinstance(program_or_graph, core.Graph):
            self._graph = program_or_graph
            self._program = None
        elif isinstance(program_or_graph, framework.Program):
            self._graph = core.Graph(program_or_graph.desc)
            self._program = program_or_graph
        else:
            raise ValueError("Wrong program_to_graph type: %s" %
                             type(program_or_graph))

        self._program_desc = self._graph.origin_program_desc()
X
polish  
Xin Pan 已提交
86 87 88
        self._scope = None
        self._place = None
        self._executor = None
89 90
        self._compiled = False
        self._is_data_parallel = False
F
flame 已提交
91
        self._is_inference = False
92

X
Xin Pan 已提交
93 94 95 96
    def with_data_parallel(self,
                           loss_name=None,
                           build_strategy=None,
                           exec_strategy=None,
S
sneaxiy 已提交
97 98
                           share_vars_from=None,
                           places=None):
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        """Configs the program to run in data parallel way.

        Args:
            loss_name (str): The loss name must set in training. Default None.
            build_strategy(BuildStrategy): build_strategy is used to
                build the graph so it can run on multiple devices/cores with
                optimized topology.
                For more information, please refer to fluid.BuildStrategy.
                Default None.
            exec_strategy(ExecutionStrategy): exec_strategy is used to
                to select the a way to execute the graph, for example how many
                threads are used, how many iterations to clean up the temp
                variables. For more information, please refer
                to fluid.ExecutionStrategy. Default None.
            share_vars_from(CompiledProgram): If provide, this CompiledProgram
                will share variables from `share_vars_from`. `share_vars_from`
                must be run by the executor before this CompiledProgram so that
                vars are ready.
S
sneaxiy 已提交
117 118 119 120 121 122
            places(list(CUDAPlace)|list(CPUPlace)|None): If provide, only compile
                program in the given places. Otherwise, the places used when compiled 
                is determined by the Executor, and the places used are controlled 
                by environment variables: FLAGS_selected_gpus or CUDA_VISIBLE_DEVICES
                if using GPU; or CPU_NUM if using CPU.  

X
Xin Pan 已提交
123 124 125
        Returns:
            self
        """
126
        assert not self._is_data_parallel, "Already compiled with parallel."
X
Xin Pan 已提交
127
        assert not self._is_inference, "Cannot compile both data parallel and inference"
128 129 130 131
        self._is_data_parallel = True
        self._build_strategy = build_strategy
        self._exec_strategy = exec_strategy
        self._loss_name = loss_name
X
polish  
Xin Pan 已提交
132
        self._share_vars_from = share_vars_from
X
fix  
Xin Pan 已提交
133 134 135 136
        if self._exec_strategy is None:
            self._exec_strategy = ExecutionStrategy()
        if self._build_strategy is None:
            self._build_strategy = BuildStrategy()
S
sneaxiy 已提交
137 138 139 140 141 142
        if places is not None:
            if not isinstance(places, (list, tuple)):
                places = [places]
            self._places = [_place_obj(p) for p in places]
        else:
            self._places = None
Q
Qiao Longfei 已提交
143 144
        self._build_strategy.is_distribution = framework.is_pserver_mode(
            self._program)
145 146
        return self

F
flame 已提交
147 148 149 150 151 152 153 154
    def with_inference_optimize(self, config):
        """ Add inference optimize

        Args:
            config: instance of `NativeConfig` or `AnalysisConfig` to create predictor
        Returns:
            self
        """
X
Xin Pan 已提交
155
        assert not self._is_data_parallel, "Cannot compile both data parallel and inference"
X
Xin Pan 已提交
156 157
        assert not self._is_inference, "Already compiled with inference"

F
flame 已提交
158 159 160 161 162 163 164
        assert any([
            isinstance(config, InferNativeConfig),
            isinstance(config, InferAnalysisConfig)
        ])
        self._is_inference = True
        self._infer_config = config
        return self
X
polish  
Xin Pan 已提交
165

F
flame 已提交
166
    def _with_distributed(self):
X
polish  
Xin Pan 已提交
167 168
        raise NotImplementedError()

169
    def _compile_data_parallel(self):
X
polish  
Xin Pan 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
        if self._share_vars_from:
            if self._scope:
                sys.stderr.write("share_vars_from is set, scope is ignored.\n")
            if not self._share_vars_from._is_data_parallel:
                raise ValueError("share_vars_from is not data parallel. Cannot "
                                 "share vars from it.")
            if self._share_vars_from._executor is None:
                raise ValueError(
                    "share_vars_from is not compiled and run, so there is no "
                    "var to share.")
            self._local_scopes = self._share_vars_from._executor.local_scopes()
        else:
            self._local_scopes = []
183 184

        self._exec_strategy.use_cuda = isinstance(self._place, core.CUDAPlace)
S
sneaxiy 已提交
185 186 187 188 189 190
        has_set_place = (self._places is not None)
        if has_set_place:
            desire_place = _place_obj(self._place)
            for p in self._places:
                assert p._type() == desire_place._type(), \
                    "Place type not match. You may set the wrong type of places"
191
        else:
S
sneaxiy 已提交
192 193 194
            places = cuda_places(
            ) if self._exec_strategy.use_cuda else cpu_places()
            self._places = [_place_obj(p) for p in places]
195 196 197 198 199 200 201 202
        assert self._places, "no place for execution"

        if self._exec_strategy.num_threads == 0:
            if self._exec_strategy.use_cuda:
                # Experiments on se-resnext shows that too many threads hurt
                # performance. Worth tunning for other models in the future.
                self._exec_strategy.num_threads = len(self._places) * 4
            else:
S
sneaxiy 已提交
203
                self._exec_strategy.num_threads = len(self._places) * 2
204

D
dzhwinter 已提交
205 206
        # FIXME(dzhwinter): enable_inplace should be after memory_optimize
        # if turn on python memory optimize, turn off the inplace_pass.
D
dzhwinter 已提交
207
        if self._build_strategy.memory_optimize is None:
X
Xin Pan 已提交
208
            self._build_strategy.memory_optimize = False if self._program and self._program._is_mem_optimized else True
D
dzhwinter 已提交
209
        if self._build_strategy.enable_inplace is None:
X
Xin Pan 已提交
210 211 212 213 214 215 216
            self._build_strategy.enable_inplace = False if self._program and self._program._is_mem_optimized else True

        # TODO(wuyi): trainer endpoings should be passed in through
        # build_strategy, not program.xxx.
        if self._program and self._build_strategy.num_trainers > 1 and \
                self._program._trainers_endpoints:
            tps = self._program._trainers_endpoints
D
dzhwinter 已提交
217

218
            assert self._build_strategy.num_trainers == len(
X
Xin Pan 已提交
219 220 221 222 223 224 225 226 227 228
                tps), "num_trainers == len(end_points)"
            self._build_strategy.trainers_endpoints = tps

        self._persistable_vars = []
        for block_id in range(self._program_desc.num_blocks()):
            bdesc = self._program_desc.block(block_id)
            self._persistable_vars.extend([
                cpt.to_text(v.name()) for v in bdesc.all_vars()
                if v.persistable() and v.type() != core.VarDesc.VarType.RAW
            ])
229 230

        places = list(map(_place_obj, self._places))
X
Xin Pan 已提交
231

232
        return core.ParallelExecutor(
X
Xin Pan 已提交
233
            places,
X
Xin Pan 已提交
234
            set(self._persistable_vars),
235 236
            cpt.to_text(self._loss_name)
            if self._loss_name else six.u(''), self._scope, self._local_scopes,
X
Xin Pan 已提交
237
            self._exec_strategy, self._build_strategy, self._graph)
238

F
flame 已提交
239 240 241
    def _compile_inference(self):
        return core.create_paddle_predictor(self._infer_config)

242
    def _compile(self, scope, place):
X
Xin Pan 已提交
243 244 245 246 247 248 249 250 251 252
        """Compile the program based on the configs.

        Args:
            scope: The variables (resources) that are associated with
               this compiled program.
            place: The location that the compiled program will be run on.

        Returns:
            self
        """
253
        if self._compiled:
X
polish  
Xin Pan 已提交
254 255
            if scope and self._scope != scope:
                raise ValueError("Cannot compile with different scope")
S
sneaxiy 已提交
256
            if place and not self._place._equals(place):
X
polish  
Xin Pan 已提交
257
                raise ValueError("Cannot compile with different place")
258
            return self
X
fix  
Xin Pan 已提交
259
        self._compiled = True
260 261 262 263 264

        self._scope = scope
        self._place = place
        if self._is_data_parallel:
            self._executor = self._compile_data_parallel()
F
flame 已提交
265 266
        elif self._is_inference:
            self._executor = self._compile_inference()
267 268 269 270
        else:
            p = _place_obj(self._place)
            self._executor = core.Executor(p)
        return self