layer_norm_op.cu 39.3 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18 19 20 21
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
P
Pei Yang 已提交
22 23
#include <memory>
#include <vector>
F
furnace 已提交
24

P
Pei Yang 已提交
25
#include "paddle/fluid/framework/ddim.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/operators/layer_norm_op.h"
F
furnace 已提交
27
#include "paddle/fluid/platform/float16.h"
28 29 30 31 32 33
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#endif
C
chengduoZH 已提交
34

S
sneaxiy 已提交
35 36 37
namespace paddle {
namespace operators {

F
furnace 已提交
38 39 40 41 42 43 44
using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using LayerNormParamType = typename CudnnDataType<T>::BatchNormParamType;

Z
zhiboniu 已提交
45
inline static int GetDesiredBlockDim(int64_t block_dim) {
46 47
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
Z
zhiboniu 已提交
48
  const int lwarpSize = 64;
49
#else
S
sneaxiy 已提交
50
  const int kMaxBlockDim = 512;
Z
zhiboniu 已提交
51
  const int lwarpSize = 32;
52
#endif
Z
zhiboniu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66
  return block_dim >= kMaxBlockDim ? kMaxBlockDim : lwarpSize;
}

template <typename U>
static __forceinline__ __device__ U WarpReduceSum(U val) {
  unsigned mask = 0u;
  CREATE_SHFL_MASK(mask, true);
  for (int offset = warpSize / 2; offset > 0; offset /= 2) {
    val += paddle::platform::CudaShuffleDownSync(mask, val, offset);
  }
  return val;
}

template <typename U>
67
__forceinline__ __device__ U BlockReduceSum(U val, U *shared) {
Z
zhiboniu 已提交
68 69 70 71 72
  int lane = threadIdx.x % warpSize;
  int wid = threadIdx.x / warpSize;

  val = WarpReduceSum(val);  // Each warp performs partial reduction

73
  __syncthreads();
Z
zhiboniu 已提交
74 75 76 77 78 79 80 81 82 83
  if (lane == 0) shared[wid] = val;  // Write reduced value to shared memory

  __syncthreads();  // Wait for all partial reductions
  // read from shared memory only if that warp existed
  val =
      (threadIdx.x < blockDim.x / warpSize) ? shared[lane] : static_cast<U>(0);

  if (wid == 0) val = WarpReduceSum(val);  // Final reduce within first warp

  return val;
S
sneaxiy 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

Z
zhiboniu 已提交
103 104 105 106 107 108 109 110 111 112 113
#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(                          \
    log2_block_dim, feature_size, kMaxBlockNum, ...)                        \
  case (1 << (log2_block_dim)): {                                           \
    for (int64_t i = 0; i < std::ceil(feature_size / (1.0 * kMaxBlockNum)); \
         i++) {                                                             \
      int64_t col_offset = i * static_cast<int64_t>(kMaxBlockNum);          \
      int block_num = static_cast<int>(std::min(                            \
          feature_size - col_offset, static_cast<int64_t>(kMaxBlockNum)));  \
      constexpr auto kBlockDim = (1 << (log2_block_dim));                   \
      __VA_ARGS__;                                                          \
    }                                                                       \
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
  } break

#define FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(feature_size, kMaxBlockNum, ...) \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(9, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(8, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(7, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(6, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(5, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(4, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(3, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(2, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__);                   \
  FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE(1, feature_size, kMaxBlockNum,    \
                                            ##__VA_ARGS__)

136 137 138
static __device__ __forceinline__ float real_sqrt(float x) { return sqrtf(x); }
static __device__ __forceinline__ double real_sqrt(double x) { return sqrt(x); }

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
template <typename T>
struct PairForLayerNorm {
  __device__ __forceinline__ PairForLayerNorm() {}
  __device__ __forceinline__ PairForLayerNorm(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairForLayerNormAddFunctor {
  __device__ __forceinline__ PairForLayerNorm<T> operator()(
      const PairForLayerNorm<T> &p1, const PairForLayerNorm<T> &p2) {
    return PairForLayerNorm<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

L
Leo Chen 已提交
157
template <typename T>
158
__inline__ __device__ T rsqrt_(const T val) {
159
  return static_cast<T>(1) / sqrt(val);
L
Leo Chen 已提交
160 161 162
}

template <>
163
__inline__ __device__ float rsqrt_(const float val) {
L
Leo Chen 已提交
164 165 166
  return rsqrtf(val);
}

167
template <>
168
__inline__ __device__ double rsqrt_(const double val) {
169 170 171 172
  return rsqrt(val);
}

#if CUDA_ARCH_FP16_SUPPORTED(__CUDA_ARCH__)
L
Leo Chen 已提交
173
template <>
174
__inline__ __device__ half rsqrt_(const half val) {
L
Leo Chen 已提交
175 176
  return hrsqrt(val);
}
177
#endif
L
Leo Chen 已提交
178

F
furnace 已提交
179 180 181
template <typename T, typename U, int BlockDim>
__global__ void LayerNormForward(const T *x, const U *scale, const U *bias,
                                 T *y, U *mean, U *var, float epsilon,
Z
zhiboniu 已提交
182
                                 int64_t feature_size) {
L
Leo Chen 已提交
183 184
  __shared__ U mean_share;
  __shared__ U var_share;
185 186 187
  __shared__ U shared_mean[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                 // warpSize <= 1024/32 = 32;
  __shared__ U shared_var[32];
S
sneaxiy 已提交
188

Z
zhiboniu 已提交
189 190
  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;
S
sneaxiy 已提交
191

192
  // Step 1: Reduce to calculate mean and var
L
Leo Chen 已提交
193 194
  U mean_val = 0;
  U var_val = 0;
Z
zhiboniu 已提交
195
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
196
    U tmp = static_cast<U>(x[i]);
197
    mean_val += tmp;
S
sneaxiy 已提交
198 199
    var_val += (tmp * tmp);
  }
Z
zhiboniu 已提交
200

201 202
  mean_val = BlockReduceSum<U>(mean_val, shared_mean);
  var_val = BlockReduceSum<U>(var_val, shared_var);
Z
zhiboniu 已提交
203

204
  if (threadIdx.x == 0) {
Z
zhiboniu 已提交
205 206
    auto scale = static_cast<float>(1.) / static_cast<float>(feature_size);
    auto tmp = mean_val * scale;
L
Leo Chen 已提交
207
    mean[blockIdx.x] = mean_share = static_cast<U>(tmp);
Z
zhiboniu 已提交
208 209 210
    var_share = static_cast<U>(var_val * scale - mean_share * mean_share);
    var_share = var_share > U(0) ? var_share : U(0);
    var[blockIdx.x] = var_share;
211
  }
S
sneaxiy 已提交
212
  __syncthreads();
L
Leo Chen 已提交
213 214

  mean_val = mean_share;
215
  U invvar = rsqrt_<U>(var_share + static_cast<U>(epsilon));
S
sneaxiy 已提交
216

217
  // Step 2: Calculate y
S
sneaxiy 已提交
218 219
  if (scale != nullptr) {
    if (bias != nullptr) {
Z
zhiboniu 已提交
220
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
S
sneaxiy 已提交
221
           i += BlockDim, j += BlockDim) {
F
furnace 已提交
222
        y[i] = static_cast<T>(
L
Leo Chen 已提交
223
            scale[j] * (static_cast<U>(x[i]) - mean_val) * invvar + bias[j]);
S
sneaxiy 已提交
224 225
      }
    } else {
Z
zhiboniu 已提交
226
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
S
sneaxiy 已提交
227
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
228 229
        y[i] = static_cast<T>(scale[j] * (static_cast<U>(x[i]) - mean_val) *
                              invvar);
S
sneaxiy 已提交
230 231 232 233
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
Z
zhiboniu 已提交
234
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
S
sneaxiy 已提交
235
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
236
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar +
F
furnace 已提交
237
                              bias[j]);
S
sneaxiy 已提交
238 239
      }
    } else {
Z
zhiboniu 已提交
240
      for (int64_t i = beg_idx, j = threadIdx.x; i < end_idx;
S
sneaxiy 已提交
241
           i += BlockDim, j += BlockDim) {
L
Leo Chen 已提交
242 243 244 245 246 247 248 249
        y[i] = static_cast<T>((static_cast<U>(x[i]) - mean_val) * invvar);
      }
    }
  }
}

template <typename T, typename U, int VPT>
__inline__ __device__ void cuLoadAddStridedInputs(
Z
zhiboniu 已提交
250 251 252 253 254 255
    const int64_t i1_block, const int thr_load_row_off,
    const int thr_load_col_off, const int i2_off, const int row_stride,
    U *warp_buf1, U *warp_buf2, const T *input, const T *dout,
    const int64_t i1_end, const int64_t n2, const U *__restrict__ mean,
    const U *__restrict__ var, const float epsilon) {
  const int64_t i1 = i1_block + thr_load_row_off;
L
Leo Chen 已提交
256 257
  if (i1 >= i1_end) return;
  U curr_mean = mean[i1];
258
  U curr_invvar = rsqrt_<U>(var[i1] + epsilon);
L
Leo Chen 已提交
259 260
  for (int k = 0; k < VPT; ++k) {
    const int i2 = i2_off + k;
Z
zhiboniu 已提交
261
    const int64_t load_idx = i1 * n2 + i2;
L
Leo Chen 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
    const int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
    if (i2 < n2) {
      U curr_input = static_cast<U>(input[load_idx]);
      U curr_dout = static_cast<U>(dout[load_idx]);
      warp_buf1[write_idx] += curr_dout;
      warp_buf2[write_idx] +=
          curr_dout * (curr_input - curr_mean) * curr_invvar;
    }
  }
}

template <typename T, typename U, int BDIMX, int BDIMY, int VPTX>
__global__ void LayerNormBackwardPartGradGammaBeta(
Z
zhiboniu 已提交
275 276
    const T *__restrict__ dout, const T *__restrict__ input, const int64_t n1,
    const int64_t n2, const U *__restrict__ mean, const U *__restrict__ var,
L
Leo Chen 已提交
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
    float epsilon, U *part_grad_gamma, U *part_grad_beta) {
  // VPTX -> value per thread.x, BDIMX -> blockDim.x, BDIMY -> blockDim.y, BDIMX
  // -> blockDim.x
  // template for compile time optimizations

  constexpr int row_stride = BDIMX + 1;
  const int thr_load_col_off = (threadIdx.x * VPTX) & (BDIMX - 1);
  const int thr_load_row_off =
      (threadIdx.x * VPTX) / BDIMX + threadIdx.y * BDIMY;
  const int i2_off = blockIdx.x * BDIMX + thr_load_col_off;

  constexpr int shared_cap = (BDIMX * BDIMY > 2 * VPTX * BDIMY * row_stride)
                                 ? BDIMX * BDIMY
                                 : 2 * VPTX * BDIMY * row_stride;
  __shared__ U buf[shared_cap];

  U *warp_buf1 = reinterpret_cast<U *>(buf);
  U *warp_buf2 = warp_buf1 + VPTX * BDIMY * row_stride;

  for (int idx = threadIdx.y * blockDim.x + threadIdx.x;
       idx < 2 * VPTX * BDIMY * row_stride; idx += BDIMX * BDIMY) {
    buf[idx] = U(0);
  }
  __syncthreads();

Z
zhiboniu 已提交
302
  for (int64_t i1_block = blockIdx.y * BDIMY * VPTX; i1_block < n1;
L
Leo Chen 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
       i1_block += VPTX * BDIMY * gridDim.y) {
    cuLoadAddStridedInputs<T, U, VPTX>(
        i1_block, thr_load_row_off, thr_load_col_off, i2_off, row_stride,
        warp_buf1, warp_buf2, input, dout, n1, n2, mean, var, epsilon);
  }
  __syncthreads();

  // inter-warp reductions
  // sum within each warp
  U acc1 = U(0);
  U acc2 = U(0);
  for (int k = 0; k < VPTX; ++k) {
    int row1 = threadIdx.y + k * VPTX;
    int idx1 = row1 * row_stride + threadIdx.x;
    acc1 += warp_buf1[idx1];
    acc2 += warp_buf2[idx1];
  }
  warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
  warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
  __syncthreads();
  // sum all warps
  for (int offset = VPTX >> 1; offset > 1; offset >>= 1) {
    if (threadIdx.y < offset) {
      int row1 = threadIdx.y;
      int row2 = threadIdx.y + offset;
      int idx1 = row1 * row_stride + threadIdx.x;
      int idx2 = row2 * row_stride + threadIdx.x;
      warp_buf1[idx1] += warp_buf1[idx2];
      warp_buf2[idx1] += warp_buf2[idx2];
    }
    __syncthreads();
  }
Z
zhiboniu 已提交
335
  int64_t i2 = blockIdx.x * blockDim.x + threadIdx.x;
L
Leo Chen 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
  if (threadIdx.y == 0 && i2 < n2) {
    int row1 = threadIdx.y;
    int row2 = threadIdx.y + 1;
    int idx1 = row1 * row_stride + threadIdx.x;
    int idx2 = row2 * row_stride + threadIdx.x;
    part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
    part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
  }
}

template <typename T, typename U, int BDIMX, int BDIMY>
__global__ void LayerNormBackwardSumGradGammaBeta(
    const U *part_grad_gamma, const U *part_grad_beta, const int part_size,
    // const int n1, const int n2, T* grad_gamma, T* grad_beta) {
    const int n1, const int n2, U *grad_gamma, U *grad_beta) {
  // sum partial gradients for gamma and beta
  __shared__ U buf[BDIMX * BDIMY];
Z
zhiboniu 已提交
353
  int64_t i2 = blockIdx.x * BDIMX + threadIdx.x;
L
Leo Chen 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
  if (i2 < n2) {
    // each warp does sequential reductions until reduced part_size is num_warps
    int num_warp_reductions = part_size / BDIMY;
    U sum_gamma = U(0);
    U sum_beta = U(0);
    const U *part_grad_gamma_ptr =
        part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
    const U *part_grad_beta_ptr =
        part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
    for (int warp_offset = 0; warp_offset < num_warp_reductions;
         ++warp_offset) {
      sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
      sum_beta += part_grad_beta_ptr[warp_offset * n2];
    }
    // inter-warp reductions
    constexpr int nbsize3 = BDIMX * BDIMY / 2;
    for (int offset = BDIMY / 2; offset >= 1; offset /= 2) {
      // top half write to shared memory
      if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
        const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
        buf[write_idx] = sum_gamma;
        buf[write_idx + nbsize3] = sum_beta;
      }
      __syncthreads();
      // bottom half sums
      if (threadIdx.y < offset) {
        const int read_idx = threadIdx.y * BDIMX + threadIdx.x;
        sum_gamma += buf[read_idx];
        sum_beta += buf[read_idx + nbsize3];
      }
      __syncthreads();
    }
    // write out fully summed gradients
    if (threadIdx.y == 0) {
      grad_gamma[i2] = sum_gamma;
      grad_beta[i2] = sum_beta;
    }
  }
}

template <typename T, typename U, int BDIMX, int BDIMY>
__global__ void LayerNormBackwardComputeGradInput(
    const T *__restrict__ dout, const T *__restrict__ input, const int n1,
    const int n2,
    // const U* __restrict__ mean, const U* __restrict__ var, const float
    // epsilon, const T* gamma,
    const U *__restrict__ mean, const U *__restrict__ var, const float epsilon,
    const U *gamma, T *grad_input) {
402 403 404
#ifdef __HIPCC__
  for (auto i1 = hipBlockIdx_y; i1 < n1; i1 += hipGridDim_y) {
#else
L
Leo Chen 已提交
405
  for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
406
#endif
L
Leo Chen 已提交
407 408 409
    U sum_loss1 = U(0);
    U sum_loss2 = U(0);
    const U c_mean = mean[i1];
410
    const U c_invvar = rsqrt_<U>(var[i1] + epsilon);
L
Leo Chen 已提交
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    const T *k_input = input + i1 * n2;
    const T *k_dout = dout + i1 * n2;
    constexpr int numx = BDIMX * BDIMY;
    const int thrx = threadIdx.x + threadIdx.y * BDIMX;
    if (gamma != NULL) {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss * gamma[l + k];
          sum_loss2 += c_loss * gamma[l + k] * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss * gamma[l];
        sum_loss2 += c_loss * gamma[l] * (c_h - c_mean) * c_invvar;
      }
    } else {
      int l = 4 * thrx;
      for (; l + 3 < n2; l += 4 * numx) {
        for (int k = 0; k < 4; ++k) {
          const U c_h = static_cast<U>(k_input[l + k]);
          const U c_loss = static_cast<U>(k_dout[l + k]);
          sum_loss1 += c_loss;
          sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
        }
      }
      for (; l < n2; ++l) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        sum_loss1 += c_loss;
        sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
      }
    }
    // intra-warp reductions
    for (int mask = BDIMX / 2; mask > 0; mask /= 2) {
450 451 452 453 454 455
#ifdef PADDLE_WITH_HIP
      sum_loss1 += __shfl_xor(sum_loss1, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 += __shfl_xor(sum_loss2, mask,
                              warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
#else
L
Leo Chen 已提交
456 457 458 459 460 461
      sum_loss1 +=
          __shfl_xor_sync(0xffffffff, sum_loss1, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss1, mask);
      sum_loss2 +=
          __shfl_xor_sync(0xffffffff, sum_loss2, mask,
                          warpSize);  // WARP_SHFL_XOR(sum_loss2, mask);
462
#endif
L
Leo Chen 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    }
    // inter-warp reductions
    if (BDIMY > 1) {
      __shared__ U buf[BDIMX * BDIMY];
      for (int offset = BDIMY / 2; offset > 0; offset /= 2) {
        // upper half of warps write to shared
        if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
          const int wrt_i = (threadIdx.y - offset) * BDIMX + threadIdx.x;
          buf[2 * wrt_i] = sum_loss1;
          buf[2 * wrt_i + 1] = sum_loss2;
        }
        __syncthreads();
        // lower half merges
        if (threadIdx.y < offset) {
          const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
          sum_loss1 += buf[2 * read_i];
          sum_loss2 += buf[2 * read_i + 1];
        }
        __syncthreads();
      }
      if (threadIdx.y == 0) {
        buf[2 * threadIdx.x] = sum_loss1;
        buf[2 * threadIdx.x + 1] = sum_loss2;
      }
      __syncthreads();
      if (threadIdx.y != 0) {
        sum_loss1 = buf[2 * threadIdx.x];
        sum_loss2 = buf[2 * threadIdx.x + 1];
      }
    }
    // all threads now have the two sums over l
    U fH = (U)n2;
    U term1 = (U(1) / fH) * c_invvar;
    T *k_grad_input = grad_input + i1 * n2;
    if (gamma != NULL) {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss * gamma[l];
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
      }
    } else {
      for (int l = thrx; l < n2; l += numx) {
        const U c_h = static_cast<U>(k_input[l]);
        const U c_loss = static_cast<U>(k_dout[l]);
        U f_grad_input = fH * c_loss;
        f_grad_input -= sum_loss1;
        f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
        f_grad_input *= term1;
        k_grad_input[l] = static_cast<T>(f_grad_input);
S
sneaxiy 已提交
516 517 518 519 520 521 522
      }
    }
  }
}

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
F
furnace 已提交
523
template <typename T, typename U, int BlockDim, bool HasDx>
Z
zhiboniu 已提交
524 525 526 527 528 529 530
__global__ void LayerNormBackwardGradientAll(
    const T *x, const T *d_y, U *d_scale, U *d_bias, T *d_x, const U *mean,
    const U *var, const U *scale, float epsilon, int64_t batch_size,
    int64_t feature_size, int64_t col_offset) {
  int64_t beg_idx = threadIdx.x * feature_size + (blockIdx.x + col_offset);
  int64_t end_idx = batch_size * feature_size + (blockIdx.x + col_offset);
  int64_t stride = BlockDim * feature_size;
531

F
furnace 已提交
532
  U d_scale_partial = static_cast<U>(0), d_bias_partial = static_cast<U>(0);
S
sneaxiy 已提交
533

Z
zhiboniu 已提交
534
  for (int64_t i = beg_idx; i < end_idx; i += stride) {
S
sneaxiy 已提交
535
    int row_idx = i / feature_size;
F
furnace 已提交
536 537 538 539
    auto var_val = real_sqrt(static_cast<U>(var[row_idx]) + epsilon);
    d_scale_partial += static_cast<U>(d_y[i]) *
                       (static_cast<U>(x[i]) - mean[row_idx]) / var_val;
    d_bias_partial += static_cast<U>(d_y[i]);
540
    if (HasDx) {
F
furnace 已提交
541 542
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                              scale[blockIdx.x + col_offset] / var_val);
543
    }
S
sneaxiy 已提交
544 545
  }

546 547 548 549 550
  __shared__ U shared_scale[32];  // threadIdx.x / warpSize <= kMaxBlockDim /
                                  // warpSize <= 1024/32 = 32;
  __shared__ U shared_bias[32];
  d_scale_partial = BlockReduceSum<U>(d_scale_partial, shared_scale);
  d_bias_partial = BlockReduceSum<U>(d_bias_partial, shared_bias);
S
sneaxiy 已提交
551 552

  if (threadIdx.x == 0) {
Z
zhiboniu 已提交
553 554
    d_scale[blockIdx.x + col_offset] = d_scale_partial;
    d_bias[blockIdx.x + col_offset] = d_bias_partial;
S
sneaxiy 已提交
555 556 557 558 559 560
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
F
furnace 已提交
561
template <typename T, typename U, int BlockDim, bool HasDx, bool HasDScale>
S
sneaxiy 已提交
562
__global__ void LayerNormBackwardGradientScaleOrBias(
F
furnace 已提交
563
    const T *x, const T *d_y, U *d_scale, U *d_bias, T *d_x, const U *mean,
Z
zhiboniu 已提交
564 565
    const U *var, const U *scale, float epsilon, int64_t batch_size,
    int64_t feature_size, int col_offset) {
F
furnace 已提交
566
  using BlockReduce = cub::BlockReduce<U, BlockDim>;
S
sneaxiy 已提交
567
  __shared__ typename BlockReduce::TempStorage temp_storage;
Z
zhiboniu 已提交
568 569
  int64_t beg_idx = threadIdx.x * feature_size + blockIdx.x + col_offset;
  int64_t end_idx = batch_size * feature_size + blockIdx.x + col_offset;
S
sneaxiy 已提交
570
  int stride = BlockDim * feature_size;
F
furnace 已提交
571
  U d_scale_or_d_bias_partial = static_cast<U>(0);
S
sneaxiy 已提交
572

Z
zhiboniu 已提交
573
  for (int64_t i = beg_idx; i < end_idx; i += stride) {
S
sneaxiy 已提交
574
    int row_idx = i / feature_size;
F
furnace 已提交
575 576
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[row_idx]) + epsilon));
S
sneaxiy 已提交
577
    if (HasDScale) {
F
furnace 已提交
578 579 580
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]) *
                                   (static_cast<U>(x[i]) - mean[row_idx]) /
                                   var_val;
S
sneaxiy 已提交
581
    } else {  // d_bias != nullptr
F
furnace 已提交
582
      d_scale_or_d_bias_partial += static_cast<U>(d_y[i]);
S
sneaxiy 已提交
583 584 585
    }

    if (HasDx) {
586
      if (scale != nullptr) {
F
furnace 已提交
587 588
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) *
                                scale[blockIdx.x + col_offset] / var_val);
589
      } else {
F
furnace 已提交
590
        d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
591
      }
S
sneaxiy 已提交
592 593 594 595 596 597 598 599
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
600
      d_scale[blockIdx.x + col_offset] = d_scale_or_d_bias_partial;
S
sneaxiy 已提交
601
    } else {
602
      d_bias[blockIdx.x + col_offset] = d_scale_or_d_bias_partial;
S
sneaxiy 已提交
603 604 605 606
    }
  }
}

F
furnace 已提交
607
template <typename T, typename U, int BlockDim>
Z
zhiboniu 已提交
608 609 610
__global__ void LayerNormBackwardPostProcessToCalculateDX(
    const T *x, T *d_x, const U *mean, const U *var, float epsilon,
    int64_t feature_size) {
F
furnace 已提交
611
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
612
  __shared__ typename BlockReduce::TempStorage temp_storage;
F
furnace 已提交
613
  __shared__ U d_x_reduce_tmp[2];
614

Z
zhiboniu 已提交
615 616
  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;
617

F
furnace 已提交
618 619 620
  U block_mean = mean[blockIdx.x];
  U block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
Z
zhiboniu 已提交
621
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
622 623 624
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
625 626 627 628
  }

  auto pair =
      BlockReduce(temp_storage)
F
furnace 已提交
629 630
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());
631 632

  if (threadIdx.x == 0) {
F
furnace 已提交
633 634 635 636
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
637 638 639 640 641
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
Z
zhiboniu 已提交
642
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
643 644 645
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
646 647 648
  }
}

S
sneaxiy 已提交
649
// Here, we only calculate d_x
F
furnace 已提交
650
template <typename T, typename U, int BlockDim>
651
__global__ void LayerNormBackwardGradientOnlyDX(const T *x, const T *d_y,
F
furnace 已提交
652 653
                                                T *d_x, const U *mean,
                                                const U *var, const U *scale,
654
                                                float epsilon,
Z
zhiboniu 已提交
655
                                                int64_t feature_size) {
F
furnace 已提交
656
  using BlockReduce = cub::BlockReduce<PairForLayerNorm<U>, BlockDim>;
657
  __shared__ typename BlockReduce::TempStorage temp_storage;
F
furnace 已提交
658
  __shared__ U d_x_reduce_tmp[2];
659

Z
zhiboniu 已提交
660 661
  int64_t beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int64_t end_idx = (blockIdx.x + 1) * feature_size;
662

F
furnace 已提交
663 664
  U block_mean = mean[blockIdx.x], block_var = var[blockIdx.x];
  U d_x_mean_partial = static_cast<U>(0), d_x_var_partial = static_cast<U>(0);
Z
zhiboniu 已提交
665
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
666 667
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(block_var) + epsilon));
S
sneaxiy 已提交
668
    if (scale != nullptr) {
669
      int col_idx = i % feature_size;
F
furnace 已提交
670 671
      d_x[i] =
          static_cast<T>(static_cast<U>(d_y[i]) * scale[col_idx] / var_val);
S
sneaxiy 已提交
672
    } else {
F
furnace 已提交
673
      d_x[i] = static_cast<T>(static_cast<U>(d_y[i]) / var_val);
S
sneaxiy 已提交
674
    }
F
furnace 已提交
675 676 677
    d_x_mean_partial += static_cast<U>(d_x[i]);
    d_x_var_partial +=
        static_cast<U>(d_x[i]) * (static_cast<U>(x[i]) - block_mean);
678 679 680 681
  }

  auto pair =
      BlockReduce(temp_storage)
F
furnace 已提交
682 683
          .Reduce(PairForLayerNorm<U>(d_x_mean_partial, d_x_var_partial),
                  PairForLayerNormAddFunctor<U>());
684 685

  if (threadIdx.x == 0) {
F
furnace 已提交
686 687 688 689
    d_x_reduce_tmp[0] = static_cast<float>(pair.first_) / feature_size;
    d_x_reduce_tmp[1] =
        static_cast<float>(pair.second_) /
        (feature_size * (static_cast<float>(block_var) + epsilon));
690 691 692 693 694
  }
  __syncthreads();

  d_x_mean_partial = d_x_reduce_tmp[0];
  d_x_var_partial = d_x_reduce_tmp[1];
Z
zhiboniu 已提交
695
  for (int64_t i = beg_idx; i < end_idx; i += BlockDim) {
F
furnace 已提交
696 697 698
    d_x[i] -= static_cast<T>(d_x_mean_partial);
    d_x[i] -=
        static_cast<T>((static_cast<U>(x[i]) - block_mean) * d_x_var_partial);
S
sneaxiy 已提交
699 700 701
  }
}

F
furnace 已提交
702
template <typename T, typename U>
S
sneaxiy 已提交
703
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
F
furnace 已提交
704
    const T *x, const T *d_y, T *d_x, U *d_scale, U *d_bias, const U *mean,
Z
zhiboniu 已提交
705 706
    const U *var, const U *scale, float epsilon, int64_t feature_size) {
  int64_t idx = threadIdx.x + blockIdx.x * blockDim.x;
S
sneaxiy 已提交
707
  if (idx < feature_size) {
F
furnace 已提交
708 709
    auto var_val =
        static_cast<U>(real_sqrt(static_cast<float>(var[idx]) + epsilon));
S
sneaxiy 已提交
710
    if (d_x != nullptr) {
711
      if (d_scale == nullptr) {
F
furnace 已提交
712
        d_x[idx] = static_cast<T>(static_cast<U>(d_y[idx]) / var_val);
713
      } else {
F
furnace 已提交
714 715
        d_x[idx] =
            static_cast<T>(static_cast<U>(d_y[idx]) * scale[idx] / var_val);
716
      }
S
sneaxiy 已提交
717
    }
718 719

    if (d_scale != nullptr) {
F
furnace 已提交
720 721
      d_scale[idx] = static_cast<U>(d_y[idx]) *
                     (static_cast<U>(x[idx]) - mean[idx]) / var_val;
722 723
    }

F
furnace 已提交
724
    if (d_bias != nullptr) d_bias[idx] = static_cast<U>(d_y[idx]);
S
sneaxiy 已提交
725 726 727
  }
}

F
furnace 已提交
728 729 730
template <typename T, typename U>
static void LayerNormBackward(const T *x, const T *d_y, const U *scale,
                              const U *mean, const U *var, T *d_x, U *d_scale,
Z
zhiboniu 已提交
731 732
                              U *d_bias, float epsilon, int64_t batch_size,
                              int64_t feature_size,
L
Leo Chen 已提交
733 734 735
                              const framework::ExecutionContext &ctx) {
  auto &dev_ctx = ctx.cuda_device_context();
  auto stream = dev_ctx.stream();
736 737 738
#ifdef __HIPCC__
  const int kMaxBlockDim = 256;
#else
S
sneaxiy 已提交
739
  const int kMaxBlockDim = 512;
740
#endif
741
  const int kMaxBlockNum = 128;
742 743 744
  int gradient_flag = ((d_x != nullptr ? 1 : 0) << 2) |
                      ((d_scale != nullptr ? 1 : 0) << 1) |
                      ((d_bias != nullptr ? 1 : 0));
S
sneaxiy 已提交
745 746 747 748
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
    LayerNormBackwardWhenBatchSizeIsOne<
F
furnace 已提交
749 750 751
        T, U><<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim,
                0, stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale,
                             epsilon, feature_size);
752 753 754 755

    if (d_x != nullptr) {
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
756
                             T, U, kBlockDim><<<1, kBlockDim, 0, stream>>>(
757 758 759
            x, d_x, mean, var, epsilon, feature_size));
      }
    }
S
sneaxiy 已提交
760 761 762 763 764 765 766
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
767 768 769
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
770
                T, U, kBlockDim, false,
771 772 773
                false><<<block_num, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
774 775 776 777
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
778 779 780
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
781 782
                T, U, kBlockDim, false,
                true><<<block_num, kBlockDim, 0, stream>>>(
783 784
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
785 786 787 788
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
789 790
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
S
sneaxiy 已提交
791
            LayerNormBackwardGradientAll<
F
furnace 已提交
792
                T, U, kBlockDim, false><<<block_num, kBlockDim, 0, stream>>>(
S
sneaxiy 已提交
793
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
794
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
795 796 797
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
798 799 800
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientOnlyDX<
F
furnace 已提交
801
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
802 803
                x, d_y, d_x, mean, var, scale, epsilon, feature_size));
      }
S
sneaxiy 已提交
804 805 806
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
807 808 809
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
810 811
                T, U, kBlockDim, true,
                false><<<block_num, kBlockDim, 0, stream>>>(
812 813
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
814
      }
815 816 817
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
818
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
819 820
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
821 822 823
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
824 825 826
        FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE(
            feature_size, kMaxBlockNum,
            LayerNormBackwardGradientScaleOrBias<
F
furnace 已提交
827 828
                T, U, kBlockDim, true,
                true><<<block_num, kBlockDim, 0, stream>>>(
829 830
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size, col_offset));
S
sneaxiy 已提交
831
      }
832 833 834
      switch (GetDesiredBlockDim(feature_size)) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardPostProcessToCalculateDX<
F
furnace 已提交
835
                T, U, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
836 837
                x, d_x, mean, var, epsilon, feature_size));
      }
S
sneaxiy 已提交
838 839
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
L
Leo Chen 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
    {
      constexpr int VPT = 4;
      constexpr int BDIMX2 = 32;
      constexpr int BDIMY2 = 4;
      dim3 threads2(BDIMX2, BDIMY2, 1);
      constexpr int part_size = BDIMY2 * VPT;
      const dim3 blocks2((feature_size + BDIMX2 - 1) / BDIMX2, part_size, 1);

      auto part_grad_gamma_ptr =
          memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
      auto part_grad_beta_ptr =
          memory::Alloc(dev_ctx, part_size * feature_size * sizeof(U));
      U *part_grad_gamma = reinterpret_cast<U *>(part_grad_gamma_ptr->ptr());
      U *part_grad_beta = reinterpret_cast<U *>(part_grad_beta_ptr->ptr());

      LayerNormBackwardPartGradGammaBeta<T, U, BDIMX2, BDIMY2,
                                         VPT><<<blocks2, threads2, 0, stream>>>(
          d_y, x, batch_size, feature_size, mean, var, epsilon, part_grad_gamma,
          part_grad_beta);  // compute part_grad_gamma, beta

      constexpr int BDIMX3 = 32;
      constexpr int BDIMY3 = 8;
      dim3 threads3(BDIMX3, BDIMY3, 1);
      const dim3 blocks3((feature_size + BDIMX2 - 1) / BDIMX2, 1, 1);
      LayerNormBackwardSumGradGammaBeta<
          T, U, BDIMX3, BDIMY3><<<blocks3, threads3, 0, stream>>>(
          part_grad_gamma, part_grad_beta, part_size, batch_size, feature_size,
          d_scale, d_bias);

      constexpr int BDIMX1 = 32;
      constexpr int BDIMY1 = 4;
      dim3 threads1(BDIMX1, BDIMY1, 1);
      const dim3 blocks1(1, batch_size, 1);
      LayerNormBackwardComputeGradInput<
          T, U, BDIMX1, BDIMY1><<<blocks1, threads1, 0, stream>>>(
          d_y, x, batch_size, feature_size, mean, var, epsilon, scale, d_x);
S
sneaxiy 已提交
876
      break;
L
Leo Chen 已提交
877
    }
S
sneaxiy 已提交
878 879 880 881 882
    default:
      break;
  }
}

P
Pei Yang 已提交
883
template <typename T>
884
void LayerNormDirectCUDAFunctor<T>::operator()(gpuStream_t stream,
P
Pei Yang 已提交
885 886 887 888 889 890 891
                                               const T *input,
                                               std::vector<int> input_shape,
                                               const T *bias, const T *scale,
                                               T *output, T *mean, T *variance,
                                               int begin_norm_axis, float eps) {
  const auto x_dims = framework::make_ddim(input_shape);
  auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
Z
zhiboniu 已提交
892 893
  int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
  int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);
P
Pei Yang 已提交
894 895
  switch (GetDesiredBlockDim(feature_size)) {
    FIXED_BLOCK_DIM_CASE(
F
furnace 已提交
896
        LayerNormForward<T, T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
P
Pei Yang 已提交
897 898 899 900 901 902 903 904 905
            input, scale, bias, output, mean, variance, eps, feature_size));
    default:
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Product from begin_norm_axis to end in layer_norm must be larger "
          "than 1"));
      break;
  }
}

S
sneaxiy 已提交
906 907 908 909 910
template <typename T>
class LayerNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
911
    using U = LayerNormParamType<T>;
S
sneaxiy 已提交
912 913 914 915 916 917 918 919 920 921 922 923 924
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto *x = ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto x_dims = x->dims();
    auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
925 926 927 928
    auto *mean_data = mean->mutable_data<U>(ctx.GetPlace());
    auto *var_data = var->mutable_data<U>(ctx.GetPlace());
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<U>());
    auto *bias_data = (bias == nullptr ? nullptr : bias->data<U>());
S
sneaxiy 已提交
929 930

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
Z
zhiboniu 已提交
931 932
    int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
    int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);
S
sneaxiy 已提交
933 934 935 936 937

    auto stream = ctx.cuda_device_context().stream();

    switch (GetDesiredBlockDim(feature_size)) {
      FIXED_BLOCK_DIM_CASE(
938
          LayerNormForward<T, U,
F
furnace 已提交
939
                           kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
S
sneaxiy 已提交
940 941 942
              x_data, scale_data, bias_data, y_data, mean_data, var_data,
              epsilon, feature_size));
      default:
943 944
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Product from begin_norm_axis to end must be larger than 1"));
S
sneaxiy 已提交
945 946 947 948 949 950 951 952 953 954
        break;
    }
  }
};

template <typename T>
class LayerNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
F
furnace 已提交
955
    using U = LayerNormParamType<T>;
S
sneaxiy 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969
    const float epsilon = ctx.Attr<float>("epsilon");
    // d_x, d_scale, d_bias may be nullptr
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto *x = ctx.Input<Tensor>("X");
    auto *mean = ctx.Input<Tensor>("Mean");
    auto *var = ctx.Input<Tensor>("Variance");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    auto *x_data = x->data<T>();
    auto *d_y_data = d_y->data<T>();
F
furnace 已提交
970 971 972 973
    auto *mean_data = mean->data<U>();
    auto *var_data = var->data<U>();

    auto *scale_data = (scale == nullptr ? nullptr : scale->data<U>());
S
sneaxiy 已提交
974 975
    auto *d_scale_data =
        (d_scale == nullptr ? nullptr
F
furnace 已提交
976
                            : d_scale->mutable_data<U>(ctx.GetPlace()));
S
sneaxiy 已提交
977
    auto *d_bias_data =
F
furnace 已提交
978
        (d_bias == nullptr ? nullptr : d_bias->mutable_data<U>(ctx.GetPlace()));
S
sneaxiy 已提交
979 980 981 982 983 984
    auto *d_x_data =
        (d_x == nullptr ? nullptr : d_x->mutable_data<T>(ctx.GetPlace()));

    const auto &x_dims = x->dims();
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
Z
zhiboniu 已提交
985 986
    int64_t batch_size = static_cast<int64_t>(matrix_dim[0]);
    int64_t feature_size = static_cast<int64_t>(matrix_dim[1]);
S
sneaxiy 已提交
987

F
furnace 已提交
988 989
    LayerNormBackward<T, U>(x_data, d_y_data, scale_data, mean_data, var_data,
                            d_x_data, d_scale_data, d_bias_data, epsilon,
L
Leo Chen 已提交
990
                            batch_size, feature_size, ctx);
S
sneaxiy 已提交
991 992
  }
};
F
furnace 已提交
993

P
Pei Yang 已提交
994
template class LayerNormDirectCUDAFunctor<float>;
F
furnace 已提交
995

996 997
#undef FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE_BASE
#undef FIXED_BLOCK_DIM_FIXED_BLOCK_NUM_CASE
S
sneaxiy 已提交
998 999 1000 1001 1002
#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
1003
namespace ops = paddle::operators;
F
furnace 已提交
1004
namespace plat = paddle::platform;
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext,
                             plat::float16>);
#else
C
chengduoZH 已提交
1017 1018
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
C
chengduoZH 已提交
1019
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
F
furnace 已提交
1020 1021
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, plat::float16>);
C
chengduoZH 已提交
1022 1023
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
1024
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
F
furnace 已提交
1025 1026 1027
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext,
                             plat::float16>);
1028
#endif