test_fill_constant_op.py 8.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17 18
import unittest
import numpy as np
19
from op_test import OpTest
20

T
tangwei12 已提交
21 22
import paddle.fluid.core as core
from paddle.fluid.op import Operator
23 24
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
T
tangwei12 已提交
25

26

L
liym27 已提交
27
# Situation 1: Attr(shape) is a list(without tensor)
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
class TestFillConstantOp1(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3.8}
        self.outputs = {'Out': np.full((123, 92), 3.8)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92]}
        self.outputs = {'Out': np.full((123, 92), 0.0)}

    def test_check_output(self):
        self.check_output()


56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class TestFillConstantOp3(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int64 value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 10000000000}
        self.outputs = {'Out': np.full((123, 92), 10000000000)}

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp4(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified int value
        '''
        self.op_type = "fill_constant"

        self.inputs = {}
        self.attrs = {'shape': [123, 92], 'value': 3}
        self.outputs = {'Out': np.full((123, 92), 3)}

    def test_check_output(self):
        self.check_output()


T
tangwei12 已提交
84 85 86 87 88 89 90 91 92 93 94 95
class TestFillConstantOpWithSelectedRows(OpTest):
    def check_with_place(self, place):
        scope = core.Scope()
        # create Out Variable
        out = scope.var('Out').get_selected_rows()

        # create and run fill_constant_op operator
        fill_constant_op = Operator(
            "fill_constant", shape=[123, 92], value=3.8, Out='Out')
        fill_constant_op.run(scope, place)

        # get result from Out
T
tangwei12 已提交
96 97 98 99
        result_array = np.array(out.get_tensor())
        full_array = np.full((123, 92), 3.8, 'float32')

        self.assertTrue(np.array_equal(result_array, full_array))
T
tangwei12 已提交
100 101 102

    def test_fill_constant_with_selected_rows(self):
        places = [core.CPUPlace()]
T
tangwei12 已提交
103 104 105
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

T
tangwei12 已提交
106 107 108 109
        for place in places:
            self.check_with_place(place)


L
liym27 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
# Situation 2: Attr(shape) is a list(with tensor)
class TestFillConstantOp1_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape, 'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp2_ShapeTensorList(OpTest):
    def setUp(self):
        '''Test fill_constant op with default value
        '''
        self.op_type = "fill_constant"
        self.init_data()
        shape_tensor_list = []
        for index, ele in enumerate(self.shape):
            shape_tensor_list.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {"ShapeTensorList": shape_tensor_list}
        self.attrs = {'shape': self.infer_shape}
        self.outputs = {'Out': np.full(self.shape, 0.0)}

    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [-1, -1]

    def test_check_output(self):
        self.check_output()


class TestFillConstantOp3_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 10000000000


class TestFillConstantOp4_ShapeTensorList(TestFillConstantOp1_ShapeTensorList):
    def init_data(self):
        self.shape = [123, 92]
        self.infer_shape = [123, -1]
        self.value = 3


# Situation 3: shape is a tensor
class TestFillConstantOp1_ShapeTensor(OpTest):
    def setUp(self):
        '''Test fill_constant op with specified value
        '''
        self.op_type = "fill_constant"
        self.init_data()

        self.inputs = {"ShapeTensor": np.array(self.shape).astype("int32")}
        self.attrs = {'value': self.value}
        self.outputs = {'Out': np.full(self.shape, self.value)}

    def init_data(self):
        self.shape = [123, 92]
        self.value = 3.8

    def test_check_output(self):
        self.check_output()


# # Test python API
class TestFillConstantAPI(OpTest):
    def test_api(self):
        positive_2 = fluid.layers.fill_constant([1], "int32", 2)
        shape_tensor = fluid.layers.data(
            name="shape_tensor",
            shape=[2],
            append_batch_size=False,
            dtype="int32")

        out_1 = fluid.layers.fill_constant(
            shape=[1, 2], dtype="float32", value=1.1)
        out_2 = fluid.layers.fill_constant(
            shape=[1, positive_2], dtype="float32", value=1.1)

        out_3 = fluid.layers.fill_constant(
            shape=shape_tensor, dtype="float32", value=1.1)

        exe = fluid.Executor(place=fluid.CPUPlace())
        res_1, res_2, res_3 = exe.run(
            fluid.default_main_program(),
            feed={"shape_tensor": np.array([1, 2]).astype("int32")},
            fetch_list=[out_1, out_2, out_3])

        assert np.array_equal(res_1, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_2, np.full([1, 2], 1.1, dtype="float32"))
        assert np.array_equal(res_3, np.full([1, 2], 1.1, dtype="float32"))


221 222 223
class TestFillConstantOpError(OpTest):
    def test_errors(self):
        with program_guard(Program(), Program()):
L
liym27 已提交
224
            #for ci coverage
225 226 227 228 229 230 231 232 233 234 235 236 237 238
            x1 = fluid.layers.data(name='x1', shape=[1], dtype="int16")
            self.assertRaises(
                ValueError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint4')
            self.assertRaises(
                ValueError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='int16',
                out=x1)
L
liym27 已提交
239
            # The input dtype of fill_constant must be one of bool, float16,
240 241
            #float32, float64, int32 or int64
            x2 = fluid.layers.data(name='x2', shape=[1], dtype="int32")
L
liym27 已提交
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='uint8')
            self.assertRaises(
                TypeError,
                fluid.layers.fill_constant,
                shape=[1],
                value=5,
                dtype='float64',
                out=x2)

L
liym27 已提交
257 258 259 260 261 262 263 264 265 266 267
            # test Error of Shape
            def test_shape_type():
                fluid.layers.fill_constant(shape=1, dtype="float32", value=1)

            self.assertRaises(TypeError, test_shape_type)

            def test_shape_size():
                fluid.layers.fill_constant(shape=[], dtype="float32", value=1)

            self.assertRaises(AssertionError, test_shape_size)

268

269 270
if __name__ == "__main__":
    unittest.main()