RecurrentLayer.cpp 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include "RecurrentLayer.h"
Z
zhangjinchao01 已提交
16

17
DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation.");
Z
zhangjinchao01 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {

REGISTER_LAYER(recurrent, RecurrentLayer);

bool RecurrentLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(1U, inputLayers_.size());
  CHECK_EQ(1U, parameters_.size());
  CHECK_EQ(getSize() * getSize(), parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize(), parameters_[0]));
  if (biasParameter_.get() != NULL) {
    bias_.reset(new Weight(1, getSize(), biasParameter_));
  }
  reversed_ = config_.reversed();
  return true;
}

void RecurrentLayer::resetState() {
  CHECK(!reversed_) << "state is not allowed for reversed recurrent layer";
39 40
  Matrix::resizeOrCreate(
      prevOutput_, 1, getSize(), /* trans= */ false, useGpu_);
Z
zhangjinchao01 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
  prevOutput_->zeroMem();
}

void RecurrentLayer::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1) << "one matrix is expected for RNN state";
  prevOutput_->copyFrom(*(state->value[0]));
}

LayerStatePtr RecurrentLayer::getState() {
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
  res->value[0]->copyFrom(*prevOutput_);
  return res;
}

void RecurrentLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("RecurrentFwTimer", getName().c_str());
  Layer::forward(passType);
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  resetOutput(batchSize, getSize());
  CHECK_EQ(getSize(), input.value->getWidth());
  const int* starts = input.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);

  output_.value->assign(*input.value);
  if (bias_) {
    output_.value->addBias(*bias_->getW(), 1);
  }
  if (!FLAGS_rnn_use_batch) {
    forwardSequence(batchSize, numSequences, starts);
  } else {
    forwardBatch(batchSize, numSequences, starts);
  }
}

79 80
void RecurrentLayer::forwardSequence(int batchSize,
                                     size_t numSequences,
Z
zhangjinchao01 已提交
81 82 83 84 85
                                     const int* starts) {
  REGISTER_TIMER_INFO("RecurrentFwSequence", getName().c_str());
  frameOutput_.reserve(batchSize);
  for (int i = frameOutput_.size(); i < batchSize; ++i) {
    Argument arg;
86 87 88 89 90 91 92 93 94 95
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               getSize(),
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              getSize(),
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    frameOutput_.push_back(arg);
  }

  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].value->setData(output_.value->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    forwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::forwardOneSequence(int start, int length) {
  if (!reversed_) {
    if (prevOutput_) {
112
      frameOutput_[start].value->mul(*prevOutput_, *weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
113
    }
114 115
    activation_->forward(frameOutput_[start]).check();

Z
zhangjinchao01 已提交
116
    for (int i = 1; i < length; ++i) {
117
      frameOutput_[start + i].value->mul(
118
          *frameOutput_[start + i - 1].value, *weight_->getW(), 1, 1);
119
      activation_->forward(frameOutput_[start + i]).check();
Z
zhangjinchao01 已提交
120 121 122 123 124
    }
    if (prevOutput_) {
      prevOutput_->assign(*frameOutput_[start + length - 1].value);
    }
  } else {
125
    activation_->forward(frameOutput_[start + length - 1]).check();
Z
zhangjinchao01 已提交
126
    for (int i = length - 2; i >= 0; --i) {
127
      frameOutput_[start + i].value->mul(
128
          *frameOutput_[start + i + 1].value, *weight_->getW(), 1, 1);
129
      activation_->forward(frameOutput_[start + i]).check();
Z
zhangjinchao01 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    }
  }
}

void RecurrentLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTimer", getName().c_str());
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  const int* starts = input.sequenceStartPositions->getData(false);
  size_t numSequences = input.getNumSequences();

  if (!FLAGS_rnn_use_batch) {
    backwardSequence(batchSize, numSequences, starts);
  } else {
    backwardBatch(batchSize, numSequences, starts);
  }

  if (input.grad) {
    input.grad->add(*output_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*output_.grad, 1);
    bias_->getParameterPtr()->incUpdate(callback);
  }
  weight_->getParameterPtr()->incUpdate(callback);
}

159 160
void RecurrentLayer::backwardSequence(int batchSize,
                                      size_t numSequences,
Z
zhangjinchao01 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                                      const int* starts) {
  REGISTER_TIMER_INFO("RecurrentBwSequence", getName().c_str());
  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].grad->setData(output_.grad->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    backwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::backwardOneSequence(int start, int length) {
  MatrixPtr weightT = weight_->getW()->getTranspose();
  if (!reversed_) {
    for (int i = length - 1; i > 0; --i) {
177
      activation_->backward(frameOutput_[start + i]).check();
178
      frameOutput_[start + i - 1].grad->mul(
179
          *frameOutput_[start + i].grad, *weightT, 1, 1);
Z
zhangjinchao01 已提交
180
    }
181
    activation_->backward(frameOutput_[start]).check();
Z
zhangjinchao01 已提交
182 183
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
184 185
          *output_.value->subMatrix(start, length - 1)->getTranspose(),
          *output_.grad->subMatrix(start + 1, length - 1),
186 187
          1,
          1);
Z
zhangjinchao01 已提交
188 189 190
    }
  } else {
    for (int i = 0; i < length - 1; ++i) {
191
      activation_->backward(frameOutput_[start + i]).check();
192
      frameOutput_[start + i + 1].grad->mul(
193
          *frameOutput_[start + i].grad, *weightT, 1, 1);
Z
zhangjinchao01 已提交
194
    }
195
    activation_->backward(frameOutput_[start + length - 1]).check();
Z
zhangjinchao01 已提交
196 197
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
198 199
          *output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
          *output_.grad->subMatrix(start, length - 1),
200 201
          1,
          1);
Z
zhangjinchao01 已提交
202 203 204 205
    }
  }
}

206 207
void RecurrentLayer::forwardBatch(int batchSize,
                                  size_t numSequences,
Z
zhangjinchao01 已提交
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
                                  const int* starts) {
  if (!batchValue_) {
    batchValue_.reset(new SequenceToBatch(useGpu_));
  }

  batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_);

  batchValue_->copyFromSeq(*output_.value);
  {
    REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    /* forward one batch */
    for (size_t n = 0; n < batchValue_->getNumBatch(); n++) {
      MatrixPtr batch2 = batchValue_->getBatchValue(n);

      if (n != 0) {
        MatrixPtr batch1 =
            batchValue_->getBatchValue(n - 1, batch2->getHeight());
226
        batch2->mul(*batch1, *weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
227 228 229
      }
      Argument arg;
      arg.value = batch2;
230
      activation_->forward(arg).check();
Z
zhangjinchao01 已提交
231 232 233 234 235
    }
  }
  batchValue_->copyBackSeq(*output_.value);
}

236 237
void RecurrentLayer::backwardBatch(int batchSize,
                                   size_t numSequences,
Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
                                   const int* starts) {
  if (!batchGrad_) {
    batchGrad_.reset(new SequenceToBatch(useGpu_));
  }
  batchGrad_->shareIndexWith(*batchValue_);

  size_t numBatch = batchGrad_->getNumBatch();
  bool backwardByBatch = numBatch < numSequences;

  batchGrad_->copyFromSeq(*output_.grad);
  {
    REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str());
    MatrixPtr weightT = weight_->getW()->getTranspose();
    AsyncGpuBlock asyncGpuBlock;
    /* backward one batch */
    for (int n = (int)numBatch - 1; n >= 0; n--) {
      MatrixPtr batch2 = batchGrad_->getBatchValue(n);
      MatrixPtr batch1 = batchValue_->getBatchValue(n, batch2->getHeight());

      Argument arg;
      arg.value = batch1;
      arg.grad = batch2;
260
      activation_->backward(arg).check();
Z
zhangjinchao01 已提交
261 262 263

      if (n != 0) {
        batch1 = batchGrad_->getBatchValue(n - 1, batch2->getHeight());
264
        batch1->mul(*batch2, *weightT, 1, 1);
Z
zhangjinchao01 已提交
265 266 267 268 269 270
      }

      if (backwardByBatch && weight_->getWGrad()) {
        if (n != 0) {
          /* backward weight */
          batch1 = batchValue_->getBatchValue(n - 1, batch2->getHeight());
271
          weight_->getWGrad()->mul(*batch1->getTranspose(), *batch2, 1, 1);
Z
zhangjinchao01 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285
        }
      }
    }
  }

  batchGrad_->copyBackSeq(*output_.grad);

  if (!backwardByBatch && weight_->getWGrad()) {
    REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    for (size_t seq = 0; seq < numSequences; ++seq) {
      int len = starts[seq + 1] - starts[seq];
      if (!reversed_) {
        weight_->getWGrad()->mul(
286 287
            *output_.value->subMatrix(starts[seq], len - 1)->getTranspose(),
            *output_.grad->subMatrix(starts[seq] + 1, len - 1),
288 289
            1,
            1);
Z
zhangjinchao01 已提交
290 291
      } else {
        weight_->getWGrad()->mul(
292 293
            *output_.value->subMatrix(starts[seq] + 1, len - 1)->getTranspose(),
            *output_.grad->subMatrix(starts[seq], len - 1),
294 295
            1,
            1);
Z
zhangjinchao01 已提交
296 297 298 299 300 301
      }
    }
  }
}

}  // namespace paddle