selected_rows_functor.cu 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/platform/cuda_helper.h"

namespace paddle {
namespace operators {
namespace math {
template <typename T>
struct SelectedRowsAdd<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));
    auto out_place = context.GetPlace();
    PADDLE_ENFORCE(platform::is_gpu_place(out_place));

    memory::Copy(
        boost::get<platform::GPUPlace>(out_place), out_data,
        boost::get<platform::GPUPlace>(in1_place), in1_data,
        in1_value.numel() * sizeof(T),
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());

    auto* in2_data = in2_value.data<T>();
    memory::Copy(
        boost::get<platform::GPUPlace>(out_place), out_data + in1_value.numel(),
        boost::get<platform::GPUPlace>(in2_place), in2_data,
        in2_value.numel() * sizeof(T),
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
  }
};

template struct SelectedRowsAdd<platform::GPUPlace, float>;
Q
QI JUN 已提交
76
template struct SelectedRowsAdd<platform::GPUPlace, double>;
77 78

namespace {
Q
QI JUN 已提交
79
template <typename T, int block_size>
80 81
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows, T* tensor_out,
Q
QI JUN 已提交
82
                                            int64_t row_numel) {
83 84 85 86 87 88 89 90 91 92
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
Q
qijun 已提交
93
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  }
}
}  // namespace

template <typename T>
struct SelectedRowsAddTensor<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

    SetConstant<platform::GPUPlace, T> functor;
    functor(context, output, 0.0);

Q
QI JUN 已提交
123
    const int block_size = 256;
124
    dim3 threads(block_size, 1);
Q
qijun 已提交
125
    dim3 grid(1, in1_rows.size());
Q
QI JUN 已提交
126 127 128 129
    SelectedRowsAddTensorKernel<T, block_size><<<
        grid, threads, 0,
        reinterpret_cast<const platform::CUDADeviceContext&>(context)
            .stream()>>>(in1_data, in1_rows.data(), out_data, in1_row_numel);
130 131 132 133 134 135 136 137 138

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
    out_eigen.device(*context.GetEigenDevice<platform::GPUPlace>()) =
        out_eigen + in2_eigen;
  }
};

template struct SelectedRowsAddTensor<platform::GPUPlace, float>;
Q
QI JUN 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
template struct SelectedRowsAddTensor<platform::GPUPlace, double>;

template <typename T>
struct SelectedRowsAddTo<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  const int64_t input2_offset,
                  framework::SelectedRows* input2) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2->height());

    auto& in1_rows = input1.rows();
    auto& in2_rows = *(input2->mutable_rows());

    auto& in1_value = input1.value();
    auto* in2_value = input2->mutable_value();

    // concat rows
    in2_rows.insert(in2_rows.end(), in1_rows.begin(), in1_rows.end());

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2->place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = in2_value->data<T>();
    memory::Copy(
        boost::get<platform::GPUPlace>(in2_place), in2_data + input2_offset,
        boost::get<platform::GPUPlace>(in1_place), in1_data,
        in1_value.numel() * sizeof(T),
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
  }
};

template struct SelectedRowsAddTo<platform::GPUPlace, float>;
template struct SelectedRowsAddTo<platform::GPUPlace, double>;
Y
Yu Yang 已提交
176 177
template struct SelectedRowsAddTo<platform::GPUPlace, int>;
template struct SelectedRowsAddTo<platform::GPUPlace, int64_t>;
Q
QI JUN 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

namespace {
template <typename T, int block_size>
__global__ void SelectedRowsAddToTensorKernel(const T* selected_rows,
                                              const int64_t* rows,
                                              T* tensor_out,
                                              int64_t row_numel) {
  const int ty = blockIdx.y;
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
    // Since index in rows of SelectedRows can be duplicate, we have to use
    // Atomic Operation to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(tensor_out + index, selected_rows[index]);
  }
}
}  // namespace

template <typename T>
struct SelectedRowsAddToTensor<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  framework::Tensor* input2) {
    auto in1_height = input1.height();
    auto in2_dims = input2->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2->data<T>();
    const int block_size = 256;
    dim3 threads(block_size, 1);
    dim3 grid(1, in1_rows.size());
    SelectedRowsAddToTensorKernel<T, block_size><<<
        grid, threads, 0,
        reinterpret_cast<const platform::CUDADeviceContext&>(context)
            .stream()>>>(in1_data, in1_rows.data(), in2_data, in1_row_numel);
  }
};

template struct SelectedRowsAddToTensor<platform::GPUPlace, float>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, double>;
Y
Yu Yang 已提交
228 229
template struct SelectedRowsAddToTensor<platform::GPUPlace, int>;
template struct SelectedRowsAddToTensor<platform::GPUPlace, int64_t>;
230 231 232 233

}  // namespace math
}  // namespace operators
}  // namespace paddle