functional.py 24.3 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

L
LielinJiang 已提交
17
import sys
L
LielinJiang 已提交
18 19
import math
import numbers
20 21
import warnings
import collections
L
LielinJiang 已提交
22

23 24 25 26
import numpy as np
from PIL import Image
from numpy import sin, cos, tan
import paddle
L
LielinJiang 已提交
27

28 29 30
from . import functional_pil as F_pil
from . import functional_cv2 as F_cv2
from . import functional_tensor as F_t
L
LielinJiang 已提交
31

32
__all__ = []
L
LielinJiang 已提交
33

L
LielinJiang 已提交
34

35 36
def _is_pil_image(img):
    return isinstance(img, Image.Image)
L
LielinJiang 已提交
37 38


39 40
def _is_tensor_image(img):
    return isinstance(img, paddle.Tensor)
L
LielinJiang 已提交
41

42 43 44 45 46 47 48 49 50

def _is_numpy_image(img):
    return isinstance(img, np.ndarray) and (img.ndim in {2, 3})


def to_tensor(pic, data_format='CHW'):
    """Converts a ``PIL.Image`` or ``numpy.ndarray`` to paddle.Tensor.

    See ``ToTensor`` for more details.
L
LielinJiang 已提交
51 52

    Args:
53
        pic (PIL.Image|np.ndarray): Image to be converted to tensor.
L
LielinJiang 已提交
54
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
55 56 57
            'CHW'. Default: 'CHW'.

    Returns:
L
LielinJiang 已提交
58
        Tensor: Converted image. Data type is same as input img.
L
LielinJiang 已提交
59 60 61 62 63

    Examples:
        .. code-block:: python

            import numpy as np
64
            from PIL import Image
65
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
66

67
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
68

69
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
70

71 72
            tensor = F.to_tensor(fake_img)
            print(tensor.shape)
L
LielinJiang 已提交
73 74

    """
75 76 77 78 79
    if not (_is_pil_image(pic) or _is_numpy_image(pic) or
            _is_tensor_image(pic)):
        raise TypeError(
            'pic should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
            format(type(pic)))
80 81 82

    if _is_pil_image(pic):
        return F_pil.to_tensor(pic, data_format)
83
    elif _is_numpy_image(pic):
84
        return F_cv2.to_tensor(pic, data_format)
85 86
    else:
        return pic if data_format.lower() == 'chw' else pic.transpose((1, 2, 0))
L
LielinJiang 已提交
87 88


89
def resize(img, size, interpolation='bilinear'):
L
LielinJiang 已提交
90
    """
91
    Resizes the image to given size
L
LielinJiang 已提交
92 93

    Args:
94
        input (PIL.Image|np.ndarray): Image to be resized.
L
LielinJiang 已提交
95
        size (int|list|tuple): Target size of input data, with (height, width) shape.
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        interpolation (int|str, optional): Interpolation method. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4

    Returns:
        PIL.Image or np.array: Resized image.
L
LielinJiang 已提交
113 114 115 116 117

    Examples:
        .. code-block:: python

            import numpy as np
118
            from PIL import Image
119
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
120

121
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
122

123
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
124

125 126
            converted_img = F.resize(fake_img, 224)
            print(converted_img.size)
127
            # (262, 224)
128 129 130

            converted_img = F.resize(fake_img, (200, 150))
            print(converted_img.size)
131
            # (150, 200)
L
LielinJiang 已提交
132
    """
133 134
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
135
        raise TypeError(
136
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
137 138 139 140
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.resize(img, size, interpolation)
141 142
    elif _is_tensor_image(img):
        return F_t.resize(img, size, interpolation)
L
LielinJiang 已提交
143
    else:
144
        return F_cv2.resize(img, size, interpolation)
L
LielinJiang 已提交
145 146


147 148 149
def pad(img, padding, fill=0, padding_mode='constant'):
    """
    Pads the given PIL.Image or numpy.array on all sides with specified padding mode and fill value.
L
LielinJiang 已提交
150 151

    Args:
152 153
        img (PIL.Image|np.array): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
154 155
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
156 157
            this is the padding for the left, top, right and bottom borders
            respectively.
158
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
L
LielinJiang 已提交
159
            length 3, it is used to fill R, G, B channels respectively.
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
L
LielinJiang 已提交
176 177

    Returns:
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
        PIL.Image or np.array: Padded image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            padded_img = F.pad(fake_img, padding=1)
            print(padded_img.size)

            padded_img = F.pad(fake_img, padding=(2, 1))
            print(padded_img.size)
    """
197 198
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
199
        raise TypeError(
200
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
201 202 203 204
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.pad(img, padding, fill, padding_mode)
205 206
    elif _is_tensor_image(img):
        return F_t.pad(img, padding, fill, padding_mode)
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    else:
        return F_cv2.pad(img, padding, fill, padding_mode)


def crop(img, top, left, height, width):
    """Crops the given Image.

    Args:
        img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.

    Returns:
        PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
224 225 226 227 228

    Examples:
        .. code-block:: python

            import numpy as np
229 230
            from PIL import Image
            from paddle.vision.transforms import functional as F
L
LielinJiang 已提交
231

232
            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
233

234
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
235

236 237
            cropped_img = F.crop(fake_img, 56, 150, 200, 100)
            print(cropped_img.size)
L
LielinJiang 已提交
238 239

    """
240 241
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
242
        raise TypeError(
243
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
244 245 246 247
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.crop(img, top, left, height, width)
248 249
    elif _is_tensor_image(img):
        return F_t.crop(img, top, left, height, width)
250 251 252 253 254 255 256 257 258 259 260 261 262 263
    else:
        return F_cv2.crop(img, top, left, height, width)


def center_crop(img, output_size):
    """Crops the given Image and resize it to desired size.

        Args:
            img (PIL.Image|np.array): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions
        
        Returns:
            PIL.Image or np.array: Cropped image.
L
LielinJiang 已提交
264

265 266 267 268 269 270 271 272 273 274 275 276 277 278
        Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            cropped_img = F.center_crop(fake_img, (150, 100))
            print(cropped_img.size)
        """
279 280
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
281
        raise TypeError(
282
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
283 284 285 286
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.center_crop(img, output_size)
287 288
    elif _is_tensor_image(img):
        return F_t.center_crop(img, output_size)
289 290 291 292
    else:
        return F_cv2.center_crop(img, output_size)


L
LielinJiang 已提交
293
def hflip(img):
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    """Horizontally flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Horizontall flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.hflip(fake_img)
            print(flpped_img.size)

    """
317 318
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
319
        raise TypeError(
320
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
321 322 323 324
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.hflip(img)
325 326
    elif _is_tensor_image(img):
        return F_t.hflip(img)
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
    else:
        return F_cv2.hflip(img)


def vflip(img):
    """Vertically flips the given Image or np.array.

    Args:
        img (PIL.Image|np.array): Image to be flipped.

    Returns:
        PIL.Image or np.array:  Vertically flipped image.

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            flpped_img = F.vflip(fake_img)
            print(flpped_img.size)

    """
355 356
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
357
        raise TypeError(
358
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
359 360 361 362
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.vflip(img)
363 364
    elif _is_tensor_image(img):
        return F_t.vflip(img)
365 366 367 368 369 370 371 372
    else:
        return F_cv2.vflip(img)


def adjust_brightness(img, brightness_factor):
    """Adjusts brightness of an Image.

    Args:
J
JYChen 已提交
373
        img (PIL.Image|np.array|paddle.Tensor): Image to be adjusted.
374 375 376 377 378
        brightness_factor (float): How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
J
JYChen 已提交
379
        PIL.Image|np.array|paddle.Tensor: Brightness adjusted image.
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_brightness(fake_img, 0.4)
            print(converted_img.size)
    """
J
JYChen 已提交
395 396
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
397
        raise TypeError(
J
JYChen 已提交
398
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
399 400 401 402
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_brightness(img, brightness_factor)
J
JYChen 已提交
403
    elif _is_numpy_image(img):
404
        return F_cv2.adjust_brightness(img, brightness_factor)
J
JYChen 已提交
405 406
    else:
        return F_t.adjust_brightness(img, brightness_factor)
407 408 409 410 411 412


def adjust_contrast(img, contrast_factor):
    """Adjusts contrast of an Image.

    Args:
J
JYChen 已提交
413
        img (PIL.Image|np.array|paddle.Tensor): Image to be adjusted.
414 415 416 417 418
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
J
JYChen 已提交
419
        PIL.Image|np.array|paddle.Tensor: Contrast adjusted image.
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_contrast(fake_img, 0.4)
            print(converted_img.size)
    """
J
JYChen 已提交
435 436
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
437
        raise TypeError(
J
JYChen 已提交
438
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
439 440 441 442
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_contrast(img, contrast_factor)
J
JYChen 已提交
443
    elif _is_numpy_image(img):
444
        return F_cv2.adjust_contrast(img, contrast_factor)
J
JYChen 已提交
445 446
    else:
        return F_t.adjust_contrast(img, contrast_factor)
447 448 449 450 451 452


def adjust_saturation(img, saturation_factor):
    """Adjusts color saturation of an image.

    Args:
J
JYChen 已提交
453
        img (PIL.Image|np.array|paddle.Tensor): Image to be adjusted.
454 455 456 457 458
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
J
JYChen 已提交
459
        PIL.Image|np.array|paddle.Tensor: Saturation adjusted image.
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_saturation(fake_img, 0.4)
            print(converted_img.size)

    """
J
JYChen 已提交
476 477
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
478
        raise TypeError(
J
JYChen 已提交
479
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
480 481 482 483
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_saturation(img, saturation_factor)
J
JYChen 已提交
484
    elif _is_numpy_image(img):
485
        return F_cv2.adjust_saturation(img, saturation_factor)
J
JYChen 已提交
486 487
    else:
        return F_t.adjust_saturation(img, saturation_factor)
488 489 490 491 492 493 494 495 496 497 498 499 500


def adjust_hue(img, hue_factor):
    """Adjusts hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

    Args:
J
JYChen 已提交
501
        img (PIL.Image|np.array|paddle.Tensor): Image to be adjusted.
502 503 504 505 506 507 508
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
J
JYChen 已提交
509
        PIL.Image|np.array|paddle.Tensor: Hue adjusted image.
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525

    Examples:
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            converted_img = F.adjust_hue(fake_img, 0.4)
            print(converted_img.size)

    """
J
JYChen 已提交
526 527
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
528
        raise TypeError(
J
JYChen 已提交
529
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
530 531 532 533
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.adjust_hue(img, hue_factor)
J
JYChen 已提交
534
    elif _is_numpy_image(img):
535
        return F_cv2.adjust_hue(img, hue_factor)
J
JYChen 已提交
536 537
    else:
        return F_t.adjust_hue(img, hue_factor)
538 539


540 541 542 543 544 545
def rotate(img,
           angle,
           interpolation="nearest",
           expand=False,
           center=None,
           fill=0):
L
LielinJiang 已提交
546 547
    """Rotates the image by angle.

548

L
LielinJiang 已提交
549
    Args:
550 551
        img (PIL.Image|np.array): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
552
        interpolation (str, optional): Interpolation method. If omitted, or if the 
553 554 555 556 557 558 559 560 561 562
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
        expand (bool, optional): Optional expansion flag.
L
LielinJiang 已提交
563 564 565
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
566
        center (2-list|2-tuple, optional): Optional center of rotation.
L
LielinJiang 已提交
567 568
            Origin is the upper left corner.
            Default is the center of the image.
569
        fill (3-list|3-tuple or int): RGB pixel fill value for area outside the rotated image.
570 571
            If int, it is used for all channels respectively.

L
LielinJiang 已提交
572 573

    Returns:
574
        PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
575 576 577 578 579

    Examples:
        .. code-block:: python

            import numpy as np
580 581 582 583
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')
L
LielinJiang 已提交
584

585
            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
586

587 588
            rotated_img = F.rotate(fake_img, 90)
            print(rotated_img.size)
L
LielinJiang 已提交
589 590

    """
591 592
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
593
        raise TypeError(
594
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
595 596
            format(type(img)))

597 598 599 600 601
    if isinstance(center, list):
        center = tuple(center)
    if isinstance(fill, list):
        fill = tuple(fill)

602
    if _is_pil_image(img):
603
        return F_pil.rotate(img, angle, interpolation, expand, center, fill)
604 605
    elif _is_tensor_image(img):
        return F_t.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
606
    else:
607
        return F_cv2.rotate(img, angle, interpolation, expand, center, fill)
L
LielinJiang 已提交
608 609 610 611 612 613


def to_grayscale(img, num_output_channels=1):
    """Converts image to grayscale version of image.

    Args:
614
        img (PIL.Image|np.array): Image to be converted to grayscale.
L
LielinJiang 已提交
615 616

    Returns:
617 618 619 620
        PIL.Image or np.array: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
L
LielinJiang 已提交
621 622
    
    Examples:
623 624 625 626 627 628 629 630 631 632 633 634 635 636
        .. code-block:: python

            import numpy as np
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)

            gray_img = F.to_grayscale(fake_img)
            print(gray_img.size)

    """
637 638
    if not (_is_pil_image(img) or _is_numpy_image(img) or
            _is_tensor_image(img)):
639
        raise TypeError(
640
            'img should be PIL Image or Tensor Image or ndarray with dim=[2 or 3]. Got {}'.
641 642 643 644
            format(type(img)))

    if _is_pil_image(img):
        return F_pil.to_grayscale(img, num_output_channels)
645 646
    elif _is_tensor_image(img):
        return F_t.to_grayscale(img, num_output_channels)
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    else:
        return F_cv2.to_grayscale(img, num_output_channels)


def normalize(img, mean, std, data_format='CHW', to_rgb=False):
    """Normalizes a tensor or image with mean and standard deviation.

    Args:
        img (PIL.Image|np.array|paddle.Tensor): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of input img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. If input is tensor, 
            this option will be igored. Default: False.

    Returns:
L
LielinJiang 已提交
664
        np.ndarray or Tensor: Normalized mage. Data format is same as input img.
L
LielinJiang 已提交
665
    
666
    Examples:
L
LielinJiang 已提交
667 668 669
        .. code-block:: python

            import numpy as np
670 671 672 673 674 675
            from PIL import Image
            from paddle.vision.transforms import functional as F

            fake_img = (np.random.rand(256, 300, 3) * 255.).astype('uint8')

            fake_img = Image.fromarray(fake_img)
L
LielinJiang 已提交
676

677 678
            mean = [127.5, 127.5, 127.5]
            std = [127.5, 127.5, 127.5]
L
LielinJiang 已提交
679

680 681
            normalized_img = F.normalize(fake_img, mean, std, data_format='HWC')
            print(normalized_img.max(), normalized_img.min())
L
LielinJiang 已提交
682 683 684

    """

685 686
    if _is_tensor_image(img):
        return F_t.normalize(img, mean, std, data_format)
L
LielinJiang 已提交
687
    else:
688 689
        if _is_pil_image(img):
            img = np.array(img).astype(np.float32)
L
LielinJiang 已提交
690

691
        return F_cv2.normalize(img, mean, std, data_format, to_rgb)
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727


def erase(img, i, j, h, w, v, inplace=False):
    """Erase the pixels of selected area in input image with given value.
    
        Args:
            img (paddle.Tensor | np.array | PIL.Image): input Tensor image. 
                 For Tensor input, the shape should be (C, H, W). For np.array input, 
                 the shape should be (H, W, C).
            i (int): y coordinate of the top-left point of erased region.
            j (int): x coordinate of the top-left point of erased region.
            h (int): Height of the erased region.
            w (int): Width of the erased region.
            v (paddle.Tensor | np.array): value used to replace the pixels in erased region. It 
                should be np.array when img is np.array or PIL.Image.
            inplace (bool, optional): Whether this transform is inplace. Default: False.

        Returns:
            paddle.Tensor | np.array | PIL.Image: Erased image. The type is same with input image.

        Examples:
            .. code-block:: python

                import paddle
                
                fake_img = paddle.randn((3, 10, 10)).astype(paddle.float32)
                values = paddle.zeros((1,1,1), dtype=paddle.float32)
                result = paddle.vision.transforms.erase(fake_img, 4, 4, 3, 3, values)

    """
    if _is_tensor_image(img):
        return F_t.erase(img, i, j, h, w, v, inplace=inplace)
    elif _is_pil_image(img):
        return F_pil.erase(img, i, j, h, w, v, inplace=inplace)
    else:
        return F_cv2.erase(img, i, j, h, w, v, inplace=inplace)