nets.py 6.6 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
14
import layers
F
fengjiayi 已提交
15

16 17 18
__all__ = [
    "simple_img_conv_pool",
    "sequence_conv_pool",
19
    "glu",
20
    "",
21
]
D
dzhwinter 已提交
22

F
fengjiayi 已提交
23 24 25

def simple_img_conv_pool(input,
                         num_filters,
D
dzhwinter 已提交
26
                         filter_size,
F
fengjiayi 已提交
27 28 29
                         pool_size,
                         pool_stride,
                         act,
F
fengjiayi 已提交
30
                         param_attr=None,
31
                         pool_type='max'):
F
fengjiayi 已提交
32 33 34 35
    conv_out = layers.conv2d(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
36
        param_attr=param_attr,
37
        act=act)
F
fengjiayi 已提交
38 39 40 41

    pool_out = layers.pool2d(
        input=conv_out,
        pool_size=pool_size,
Q
Qiao Longfei 已提交
42
        pool_type=pool_type,
43
        pool_stride=pool_stride)
Q
Qiao Longfei 已提交
44 45 46 47 48 49 50 51 52
    return pool_out


def img_conv_group(input,
                   conv_num_filter,
                   pool_size,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
F
fengjiayi 已提交
53
                   param_attr=None,
Q
Qiao Longfei 已提交
54 55 56
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=None,
                   pool_stride=1,
57
                   pool_type=None):
Q
Qiao Longfei 已提交
58 59 60 61 62
    """
    Image Convolution Group, Used for vgg net.
    """
    tmp = input
    assert isinstance(conv_num_filter, list) or \
63
        isinstance(conv_num_filter, tuple)
Q
Qiao Longfei 已提交
64 65 66 67 68 69 70 71 72

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
F
fengjiayi 已提交
73
    param_attr = __extend_list__(param_attr)
Q
Qiao Longfei 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        local_conv_act = conv_act
        if conv_with_batchnorm[i]:
            local_conv_act = None

        tmp = layers.conv2d(
            input=tmp,
            num_filters=conv_num_filter[i],
            filter_size=conv_filter_size[i],
            padding=conv_padding[i],
F
fengjiayi 已提交
87
            param_attr=param_attr[i],
88
            act=local_conv_act)
Q
Qiao Longfei 已提交
89 90

        if conv_with_batchnorm[i]:
91
            tmp = layers.batch_norm(input=tmp, act=conv_act)
Q
Qiao Longfei 已提交
92 93
            drop_rate = conv_batchnorm_drop_rate[i]
            if abs(drop_rate) > 1e-5:
94
                tmp = layers.dropout(x=tmp, dropout_prob=drop_rate)
Q
Qiao Longfei 已提交
95 96 97 98 99

    pool_out = layers.pool2d(
        input=tmp,
        pool_size=pool_size,
        pool_type=pool_type,
100
        pool_stride=pool_stride)
F
fengjiayi 已提交
101
    return pool_out
D
dzhwinter 已提交
102 103 104 105 106


def sequence_conv_pool(input,
                       num_filters,
                       filter_size,
F
fengjiayi 已提交
107
                       param_attr=None,
108
                       act="sigmoid",
109
                       pool_type="max"):
D
dzhwinter 已提交
110 111 112 113
    conv_out = layers.sequence_conv(
        input=input,
        num_filters=num_filters,
        filter_size=filter_size,
F
fengjiayi 已提交
114
        param_attr=param_attr,
115
        act=act)
D
dzhwinter 已提交
116

117
    pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type)
D
dzhwinter 已提交
118
    return pool_out
G
guosheng 已提交
119 120 121 122


def glu(input, dim=-1):
    """
G
guosheng 已提交
123 124 125 126
    The gated linear unit composed by split, sigmoid activation and elementwise 
    multiplication. Specifically, Split the input into two equal sized parts 
    :math:`a` and :math:`b` along the given dimension and then compute as 
    following:
G
guosheng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

        .. math::

            {GLU}(a, b)= a \otimes \sigma(b)

    Refer to `Language Modeling with Gated Convolutional Networks 
    <https://arxiv.org/pdf/1612.08083.pdf>`_.
    
    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
        dim (int): The dimension along which to split. If :math:`dim < 0`, the 
            dimension to split along is :math:`rank(input) + dim`.

    Returns:
        Variable: The Tensor variable with half the size of input.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 6, 9]
147
            fluid.nets.glu(input=x, dim=1)  # shape of output: [3, 3, 9]
G
guosheng 已提交
148 149 150
    """

    a, b = layers.split(input, num_or_sections=2, dim=dim)
G
guosheng 已提交
151 152
    act_b = layers.sigmoid(x=b)
    out = layers.elementwise_mul(x=a, y=act_b)
G
guosheng 已提交
153
    return out
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205


def dot_product_attention(querys, keys, values):
    """
    The dot-product attention.

    Attention mechanism can be seen as mapping a query and a set of key-value 
    pairs to an output. The output is computed as a weighted sum of the values, 
    where the weight assigned to each value is computed by a compatibility 
    function (dot-product here) of the query with the corresponding key.
    
    The dot-product attention can be implemented through (batch) matrix 
    multipication as follows:

        .. math::

            Attention(Q, K, V)= softmax(QK^\mathrm{T})V

    Refer to `Attention Is All You Need 
    <https://arxiv.org/pdf/1706.03762.pdf>`_.

    Note that batch data containing sequences with different lengths is not 
    supported by this because of the (batch) matrix multipication.
    
    Args:
        query (Variable): The input variable which is a Tensor or LoDTensor.
        key (Variable): The input variable which is a Tensor or LoDTensor.
        value (Variable): The input variable which is a Tensor or LoDTensor.

    Returns:
        tuple: The Tensor variables representing the output and attention scores.

    Examples:
        .. code-block:: python

            # Suppose q, k, v are tensor variables with the following shape:
            # q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
            out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
            out.shape  # [3, 5, 10]
            attn_scores.shape  # [3, 5, 6]
    """
    assert keys.shape[-2] == values.shape[
        -2], 'The shapes of keys and values mismatch.'
    assert querys.shape[-1] == keys.shape[
        -1], 'The shapes of querys and keys mismatch.'
    product = layers.matmul(x=querys, y=keys, transpose_y=True)
    attn_scores = layers.reshape(
        x=layers.reshape(
            x=product, shape=[-1, product.shape[-1]], act='softmax'),
        shape=product.shape)
    out = layers.matmul(attn_scores, values)
    return out, attn_scores