precision_recall_op.cc 5.5 KB
Newer Older
Y
yangyaming 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
yangyaming 已提交
15 16
#include "paddle/operators/precision_recall_op.h"

Y
yangyaming 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
namespace paddle {
namespace operators {

class PrecisionRecallOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // may contains weights and StatesInfo
    PADDLE_ENFORCE(ctx->HasInput("Predictions"),
                   "Input(Predictions) should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Labels"),
                   "Input(Labels) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("BatchMetrics"),
                   "Output(BatchMetrics) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("AccumMetrics"),
                   "Output(AccumMetrics) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("AccumStatesInfo"),
                   "Output(AccumStatesInfo) should not be null.");

    auto predictions_dims = ctx->GetInputDim("Predictions");
    auto labels_dims = ctx->GetInputDim("Labels");

    if (ctx->HasInput("Weights")) {
      auto weights_dims = ctx->GetInputDim("Weights");
Y
yangyaming 已提交
42 43
      PADDLE_ENFORCE_EQ(weights_dims,
                        framework::make_ddim({predictions_dims[0], 1}),
Y
yangyaming 已提交
44 45 46 47 48
                        "The shape of Input(Weights) should be "
                        "[batch_size, 1].");
    }
    if (ctx->HasInput("StatesInfo")) {
      auto states_dims = ctx->GetInputDim("StatesInfo");
Y
yangyaming 已提交
49 50
      PADDLE_ENFORCE_EQ(states_dims,
                        framework::make_ddim({predictions_dims[1], 4}),
Y
yangyaming 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
                        "The shape of Input(StatesInfo) should be "
                        "[class_number, 4].");
    }
    PADDLE_ENFORCE_EQ(predictions_dims[0], labels_dims[0],
                      "The 1st dimension of Input(Predictions) and "
                      "Input(Labels) both are batch_size and the shape should "
                      "be the same.");
    PADDLE_ENFORCE_EQ(labels_dims[1], 1,
                      "The 2nd dimension of Input(Labels) "
                      "contains instance label and the shape should be equal "
                      "to 1");
    PADDLE_ENFORCE_GE(predictions_dims[1], 1,
                      "The shape of Input(Predictions)'s 2nd dimension is "
                      "equal to class number and should be at least 1.");

    // Layouts of BatchMetrics and AccumMetrics both are:
    // [
    //  macro average precision, macro average recall, macro average F1 score,
    //  micro average precision, micro average recall, micro average F1 score
    // ]
    ctx->SetOutputDim("BatchMetrics", {6});
    ctx->SetOutputDim("AccumMetrics", {6});
    // Shape of AccumStatesInfo is [class_number, 4]
    // The layout of each row is:
    // [ TP, FP, TN, FN ]
    ctx->SetOutputDim("AccumStatesInfo", {predictions_dims[1], 4});
  }
Y
yangyaming 已提交
78 79 80 81 82 83

 protected:
  framework::DataType IndicateDataType(
      const framework::ExecutionContext &ctx) const override {
    return framework::ToDataType(ctx.Input<Tensor>("Predictions")->type());
  }
Y
yangyaming 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
};

class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  PrecisionRecallOpMaker(framework::OpProto *proto,
                         framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Predictions",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape N x D, "
             "where N is the batch size and D is the number of classes. "
             "Each row contains probabilities for an instance which computed "
             "by the previous operator.");
    AddInput("Labels",
             "(Tensor, default Tensor<int>), a 2-D tensor with shape N x 1, "
             "where N is the batch size. Each element is a label and the "
             "value should be in [0, class_number - 1].");
    AddInput("Weights",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape N x 1, "
             "where N is the batch size. This input is optional. If provided, "
             "weight of instance would be considered when computing metrics.")
        .AsDispensable();
    AddInput("StatesInfo",
             "(Tensor, default Tensor<int>), a 2-D tensor with shape D x 4, "
             "where D is the number of classes. This input is optional. If "
             "provided, current state will be accumulated to this state and "
             "the accumulation state will be as the output state.")
        .AsDispensable();
Y
yangyaming 已提交
111 112 113
    AddOutput("BatchMetrics", "");
    AddOutput("AccumMetrics", "");
    AddOutput("AccumStatesInfo", "");
Y
yangyaming 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    AddComment(R"DOC(
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(precision_recall, ops::PrecisionRecallOp,
                             ops::PrecisionRecallOpMaker);
REGISTER_OP_CPU_KERNEL(
    precision_recall,
    ops::PrecisionRecallKernel<paddle::platform::CPUPlace, float>,
Y
yangyaming 已提交
129
    ops::PrecisionRecallKernel<paddle::platform::CPUPlace, double>);