dot_op.h 5.7 KB
Newer Older
L
liuwei1031 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename DeviceContext, typename T>
class DotKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_out = ctx.Output<Tensor>("Out");
    tensor_out->mutable_data<T>(ctx.GetPlace());

#ifdef __NVCC__
    if (1 == tensor_out->dims().size()) {
      auto out = framework::EigenScalar<T>::From(*tensor_out);
      auto x = framework::EigenVector<T>::Flatten(*tensor_x);
      auto y = framework::EigenVector<T>::Flatten(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum();
    } else {
      auto out = EigenMatrix<T>::From(*tensor_out);
      auto x = EigenMatrix<T>::From(*tensor_x);
      auto y = EigenMatrix<T>::From(*tensor_y);

      auto& dev = *ctx.template device_context<DeviceContext>().eigen_device();
      out.device(dev) = (x * y).sum(Eigen::DSizes<int, 1>(1));
    }
#else
    const auto* data_x = tensor_x->data<T>();
    const auto* data_y = tensor_y->data<T>();
    auto* data_out = tensor_out->data<T>();

    auto x_dims = tensor_x->dims();
    auto step = x_dims[x_dims.size() - 1];
    int size = static_cast<int>(framework::product(x_dims));

    for (int ind = -1, j = 0; j < size; ++j) {
      if (j % step == 0) {
        ++ind;
        data_out[ind] = data_x[j] * data_y[j];
      } else {
        data_out[ind] += data_x[j] * data_y[j];
      }
    }
#endif
  }
};

template <typename DeviceContext, typename T>
class DotGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* tensor_x = ctx.Input<Tensor>("X");
    auto* tensor_y = ctx.Input<Tensor>("Y");
    auto* tensor_dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* tensor_dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* tensor_dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

    if (tensor_dx) tensor_dx->mutable_data<T>(ctx.GetPlace());
    if (tensor_dy) tensor_dy->mutable_data<T>(ctx.GetPlace());
#ifdef __NVCC__
    if (1 == tensor_dout->dims().size()) {
      auto dout = framework::EigenVector<T>::Flatten(*tensor_dout);

      if (tensor_dx) {
        auto y = framework::EigenVector<T>::Flatten(*tensor_y);
        auto dx = framework::EigenVector<T>::Flatten(*tensor_dx);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dx->numel());
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        auto x = framework::EigenVector<T>::Flatten(*tensor_x);
        auto dy = framework::EigenVector<T>::Flatten(*tensor_dy);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 1> size(tensor_dy->numel());
        dy.device(dev) = x * dout.broadcast(size);
      }
    } else {
      auto dout = EigenMatrix<T>::From(*tensor_dout);

      if (tensor_dx) {
        tensor_dx->mutable_data<T>(ctx.GetPlace());
        auto y = EigenMatrix<T>::From(*tensor_y);
        auto dx = EigenMatrix<T>::From(*tensor_dx);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dx->dims()[1]);
        dx.device(dev) = y * dout.broadcast(size);
      }

      if (tensor_dy) {
        tensor_dy->mutable_data<T>(ctx.GetPlace());
        auto x = EigenMatrix<T>::From(*tensor_x);
        auto dy = EigenMatrix<T>::From(*tensor_dy);
        auto& dev =
            *ctx.template device_context<DeviceContext>().eigen_device();
        Eigen::DSizes<int, 2> size(1, tensor_dy->dims()[1]);
        dy.device(dev) = x * dout.broadcast(size);
      }
    }
#else
    const auto* data_dout = tensor_dout->data<T>();

    if (tensor_dx) {
      auto* data_dx = tensor_dx->mutable_data<T>(ctx.GetPlace());
      const auto* data_y = tensor_y->data<T>();
      const framework::DDim& dim = tensor_x->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dx[i] = data_y[i] * data_dout[s];
      }
    }

    if (tensor_dy) {
      auto* data_dy = tensor_dy->mutable_data<T>(ctx.GetPlace());
      const auto* data_x = tensor_x->data<T>();
      const framework::DDim& dim = tensor_y->dims();
      size_t N = static_cast<size_t>(framework::product(dim));

      auto step = dim[dim.size() - 1];

      int s = -1;
      for (size_t i = 0; i < N; ++i) {
        if (0 == i % step) ++s;
        data_dy[i] = data_x[i] * data_dout[s];
      }
    }
#endif
  }
};

}  // namespace operators
}  // namespace paddle