ctc_align_op.cu 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
W
wanghaoshuang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <stdio.h>
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
18
#include <vector>
Y
Yi Wang 已提交
19
#include "paddle/fluid/operators/ctc_align_op.h"
W
wanghaoshuang 已提交
20 21 22 23 24

namespace paddle {
namespace operators {

template <typename T>
25
__global__ void MergeAndDelCudaKernel(const int64_t num_token, const T* tokens,
W
wanghaoshuang 已提交
26 27
                                      const size_t num_seq, size_t* lod0,
                                      const int blank, const int merge_repeated,
28
                                      size_t* out_lod0, T* output) {
W
wanghaoshuang 已提交
29 30 31 32
  int ouput_idx = 0;
  out_lod0[0] = 0;

  for (int i = 0; i < num_seq; ++i) {
33
    T pre_token = -1;
W
wanghaoshuang 已提交
34 35 36 37 38 39 40 41 42 43 44
    for (int j = lod0[i]; j < lod0[i + 1]; ++j) {
      if (tokens[j] != blank && !(merge_repeated && tokens[j] == pre_token)) {
        output[ouput_idx] = tokens[j];
        ++ouput_idx;
      }
      pre_token = tokens[j];
    }
    out_lod0[i + 1] = ouput_idx;
  }
}

45 46 47 48
template <typename T>
__global__ void PaddingMergeAndDelCudaKernel(const int64_t num_token,
                                             const T* tokens, const int blank,
                                             const int merge_repeated,
49
                                             const int padding_value,
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                                             const int64_t batch_size,
                                             T* output) {
  int ind = blockIdx.x * blockDim.x + threadIdx.x;
  if (ind >= batch_size) return;
  int output_idx = ind * num_token;
  T prev_token = -1;
  for (int i = ind * num_token; i < ind * num_token + num_token; i++) {
    if ((unsigned)tokens[i] != blank &&
        !(merge_repeated && tokens[i] == prev_token)) {
      output[output_idx] = tokens[i];
      ++output_idx;
    }
    prev_token = tokens[i];
  }
  for (int i = output_idx; i < ind * num_token + num_token; i++) {
65
    output[i] = padding_value;
66 67 68
  }
}

W
wanghaoshuang 已提交
69
template <typename T>
W
wanghaoshuang 已提交
70
class CTCAlignOpCUDAKernel : public framework::OpKernel<T> {
W
wanghaoshuang 已提交
71 72 73 74 75 76 77 78 79
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
                   "It must use CUDAPlace.");
    auto* input = ctx.Input<LoDTensor>("Input");
    auto* output = ctx.Output<LoDTensor>("Output");
    const int blank = ctx.Attr<int>("blank");
    const int merge_repeated =
        static_cast<int>(ctx.Attr<bool>("merge_repeated"));
80
    const T* tokens = input->data<T>();
81
    auto stream = ctx.cuda_device_context().stream();
82 83 84

    // tensor input which has no lod
    if (input->lod().empty()) {
85
      const int padding_value = ctx.Attr<int>("padding_value");
86 87 88 89 90
      auto input_dims = input->dims();
      T* output_data = output->mutable_data<T>({input_dims[0], input_dims[1]},
                                               ctx.GetPlace());
      PaddingMergeAndDelCudaKernel<
          T><<<32, (input_dims[0] + 32 - 1) / 32, 0, stream>>>(
91
          input_dims[1], tokens, blank, merge_repeated, padding_value,
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          input_dims[0], output_data);
    } else {
      const size_t level = 0;
      auto input_lod = framework::ToAbsOffset(input->lod());

      const int64_t num_tokens = input->dims()[0];
      const size_t num_seq = input_lod[level].size() - 1;

      // prepare a lod to record lod information while merging elements
      thrust::device_vector<size_t> dev_out_lod0(input_lod[level].size());
      size_t* dev_out_lod0_ptr = thrust::raw_pointer_cast(dev_out_lod0.data());

      // merge elements and delete blank
      T* output_data = output->mutable_data<T>({num_tokens, 1}, ctx.GetPlace());

      MergeAndDelCudaKernel<T><<<1, 1, 0, stream>>>(
          num_tokens, tokens, num_seq,
          input_lod[level].CUDAMutableData(ctx.GetPlace()), blank,
          merge_repeated, dev_out_lod0_ptr, output_data);

      // set output lod
      std::vector<size_t> host_out_lod0(dev_out_lod0.begin(),
                                        dev_out_lod0.end());
      framework::LoD out_lod;
      out_lod.push_back(host_out_lod0);
      output->set_lod(out_lod);

      // resize output dims
      output->Resize({static_cast<int64_t>(host_out_lod0.back()), 1});

      if (host_out_lod0.back() == 0) {
        output->Resize({1, 1});
        output->mutable_data<T>(ctx.GetPlace());
        math::SetConstant<platform::CUDADeviceContext, T> set_constant;
        set_constant(ctx.template device_context<platform::CUDADeviceContext>(),
                     output, -1);
      }
129
    }
W
wanghaoshuang 已提交
130 131 132 133 134 135
  }
};

}  // namespace operators
}  // namespace paddle

W
wanghaoshuang 已提交
136 137
REGISTER_OP_CUDA_KERNEL(ctc_align, paddle::operators::CTCAlignOpCUDAKernel<int>,
                        paddle::operators::CTCAlignOpCUDAKernel<int64_t>);