grad_node_info.cc 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/eager/grad_node_info.h"
16
#include "paddle/fluid/eager/accumulation/accumulation_node.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/pten/common/data_type.h"
#include "paddle/pten/core/dense_tensor.h"

#include "paddle/fluid/framework/var_type.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"

#include "glog/logging.h"

/**
 * Implementation of GradNodeBase, Edge and InputBuffer.
**/
namespace egr {

GradNodeBase::GradNodeBase(size_t bwd_in_slot_num, size_t bwd_out_slot_num) {
  bwd_in_meta_.resize(bwd_in_slot_num);
  bwd_out_meta_.resize(bwd_out_slot_num);
  // adj_edges has the same num as backward outputs
  adj_edges_.resize(bwd_out_slot_num);
}

39 40 41 42 43 44 45 46 47 48 49
void GradNodeBase::AddEdges(std::vector<AutogradMeta*>* metas, size_t slot_id) {
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
  for (const auto& meta : *metas) {
    // adj_edges has as same rank as fwd inputs, and record it's output rank
    // from
    // its pre-ops
50
    if (meta && !meta->StopGradient()) {
51 52 53 54 55
      auto node = meta->GetMutableGradNode();
      if (node) {
        adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                         meta->OutRankInfo());
      } else {
56
        meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
57 58 59
        adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                         meta->OutRankInfo());
      }
60
    }
61 62 63
  }
}

64
void GradNodeBase::AddEdges(AutogradMeta* meta, size_t slot_id) {
65 66 67 68 69 70
  PADDLE_ENFORCE_LT(
      slot_id, adj_edges_.size(),
      paddle::platform::errors::InvalidArgument(
          "Given slot id is out of range of adj_edges outter size, "
          "adj_edges is designed to has the same size of grad "
          "inputs's slot num."));
71 72
  if (meta && !meta->StopGradient()) {
    VLOG(6) << "Add Edges for slot: " << slot_id;
73 74 75 76 77
    auto node = meta->GetMutableGradNode();
    if (node) {
      adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                       meta->OutRankInfo());
    } else {
78 79 80
      meta->SetGradNode(std::make_shared<egr::GradNodeAccumulation>());
      adj_edges_[slot_id].emplace_back(meta->GetMutableGradNode(),
                                       meta->OutRankInfo());
81
    }
82
  }
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

const std::vector<GradSlotMeta>& GradNodeBase::InputMeta() const {
  return bwd_in_meta_;
}

const std::vector<GradSlotMeta>& GradNodeBase::OutputMeta() const {
  return bwd_out_meta_;
}

void GradNodeBase::SetGradInMeta(const std::vector<AutogradMeta*>& fwd_out,
                                 size_t slot_rank) {
  size_t slot_size = fwd_out.size();
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
  auto& meta = bwd_in_meta_.at(slot_rank);
  PADDLE_ENFORCE_EQ(meta.IsInitialized(), false,
                    paddle::platform::errors::PreconditionNotMet(
                        "Bwd_in_meta should only be init once, addition "
                        "initialization for it is forbidden. If you got this "
                        "error, it indicates bugs in framework."));
  // Init stop gradient vector before use to avoid push back
  meta.Init(slot_size);
  for (size_t i = 0; i < slot_size; i++) {
111 112 113 114 115
    PADDLE_ENFORCE_NOT_NULL(fwd_out[i],
                            paddle::platform::errors::PreconditionNotMet(
                                "Bwd_in_meta should only be called while "
                                "autograd_meta is not null. If you got this "
                                "error, it indicates bugs in framework."));
116 117 118 119 120 121 122 123
    if (fwd_out[i]->StopGradient()) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(i, fwd_out[i]->StopGradient());
    }
  }
}

124
void GradNodeBase::SetGradInMeta(AutogradMeta* fwd_out, size_t slot_rank) {
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_in_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_in_meta_ size, since "
          "bwd_in_meta_ is designed to hold as same num as backward "
          "inputs."));
  auto& meta = bwd_in_meta_.at(slot_rank);
  PADDLE_ENFORCE_EQ(meta.IsInitialized(), false,
                    paddle::platform::errors::PreconditionNotMet(
                        "Bwd_in_meta should only be init once, Additional "
                        "initialization for it is forbidden. If you got this "
                        "error, it indicates bugs in framework."));
  // Init stop gradient vector before use to avoid push back
  VLOG(7) << "Init bwd_in_meta_ with slot rank: " << slot_rank;
  meta.Init(1);
140
  meta.SetStopGradient(0, fwd_out->StopGradient());
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
}

void GradNodeBase::SetGradOutMeta(const std::vector<AutogradMeta*>& fwd_in,
                                  size_t slot_rank) {
  size_t slot_size = fwd_in.size();
  PADDLE_ENFORCE_LE(
      slot_rank, (bwd_out_meta_.size() - 1),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
  auto& meta = bwd_out_meta_.at(slot_rank);
  PADDLE_ENFORCE_EQ(meta.IsInitialized(), false,
                    paddle::platform::errors::PreconditionNotMet(
                        "Bwd_out_meta should only be init once. Additional "
                        "initialization for it is forbidden. If you got this "
                        "error, it indicates bugs in framework."));
  // Init stop gradient vector before use to avoid push back
  meta.Init(slot_size);
  for (size_t i = 0; i < slot_size; i++) {
161 162 163 164
    if (!fwd_in[i]) {
      meta.SetStopGradient(i, true);
      continue;
    }
165 166 167 168 169 170 171 172
    if (fwd_in[i]->StopGradient()) {
      // Set Stop Gradient only when its true or non-initialized autograd_meta,
      // since all default value is false.
      meta.SetStopGradient(i, fwd_in[i]->StopGradient());
    }
  }
}

173
void GradNodeBase::SetGradOutMeta(AutogradMeta* fwd_in, size_t slot_rank) {
174 175 176 177 178 179 180 181 182 183 184 185 186 187
  PADDLE_ENFORCE_LE(
      (slot_rank + 1), bwd_out_meta_.size(),
      paddle::platform::errors::InvalidArgument(
          "Slot Rank should less equal than bwd_out_meta_ size, "
          "since bwd_out_meta_ is designed to hold as same num as "
          "backward outputs."));
  auto& meta = bwd_out_meta_.at(slot_rank);
  PADDLE_ENFORCE_EQ(meta.IsInitialized(), false,
                    paddle::platform::errors::PreconditionNotMet(
                        "Bwd_out_meta should only be init once. Additional "
                        "initialization for it is forbidden. If you got this "
                        "error, it indicates bugs in framework."));
  // Init stop gradient vector before use to avoid push back
  meta.Init(1);
188 189 190 191 192
  if (fwd_in) {
    meta.SetStopGradient(0, fwd_in->StopGradient());
  } else {
    meta.SetStopGradient(0, true);
  }
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
}

void GradNodeBase::SetDefaultGradInOutMeta() {
  PADDLE_ENFORCE((bwd_out_meta_.size() == 1) && (bwd_in_meta_.size() == 1),
                 paddle::platform::errors::PreconditionNotMet(
                     "We can only support 1 input and 1 output in default grad "
                     "meta setter, other size of inputs and outputs should "
                     "create with Setter and Getters"));
  // Default stop_gradient is false and slot id is 0, slot size is 1;
  bwd_out_meta_[0].Init(1);
  bwd_in_meta_[0].Init(1);
}

const std::vector<std::vector<Edge>>& GradNodeBase::GetEdges() const {
  return adj_edges_;
}

void GradNodeBase::RegisterGradientHook(
    size_t slot_id, size_t rank,
    const std::function<egr::EagerTensor(const egr::EagerTensor&)>& hook) {
  gradient_hooks_.emplace_back(std::make_tuple(slot_id, rank, hook));
}

void GradNodeBase::RegisterReduceHook(const std::function<void(void)>& hook) {
  reduce_hooks_.emplace_back(hook);
}

std::vector<std::vector<egr::EagerTensor>> GradNodeBase::ApplyGradientHooks(
    const std::vector<std::vector<egr::EagerTensor>>& tensors) {
  std::vector<std::vector<egr::EagerTensor>> outs(tensors.size());
  for (auto& tuple : gradient_hooks_) {
    size_t slot_id = std::get<0>(tuple);
    size_t rank = std::get<1>(tuple);
    std::function<egr::EagerTensor(const egr::EagerTensor&)>& hook =
        std::get<2>(tuple);

    PADDLE_ENFORCE(slot_id < tensors.size(),
                   paddle::platform::errors::Fatal(
                       "Slot_id from registered hook should be smaller than "
                       "slot size of grad_tensors"));

    PADDLE_ENFORCE(rank < tensors[slot_id].size(),
                   paddle::platform::errors::Fatal(
                       "rank of slot %d from registered hook should be smaller "
                       "than rank size of grad_tensors",
                       slot_id));

    std::vector<egr::EagerTensor>& slot_out = outs[slot_id];
    slot_out.resize(tensors[slot_id].size());
    egr::EagerTensor& out = slot_out[rank];
    if (!out.defined() || !out.initialized()) {
244
      VLOG(8) << "Run Hook for tensor: " << tensors[slot_id][rank].name();
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
      out = hook(tensors[slot_id][rank]);
    } else {
      // TODO(jiabin): Why this?
      out = hook(out);
    }
  }

  for (size_t i = 0; i < outs.size(); i++) {
    if (outs[i].empty() && (!tensors[i].empty())) {
      outs[i].resize(tensors[i].size());
    }
    // TODO(Jiabin): Optimize this if we only add hook slot by slot
    for (size_t j = 0; j < outs[i].size(); j++) {
      if (!outs[i][j].defined() || !outs[i][j].initialized()) {
        outs[i][j] = tensors[i][j];
      }
    }
  }

  return outs;
}

void GradNodeBase::ApplyReduceHooks() {
  for (auto& hook : reduce_hooks_) {
    hook();
  }
}
}  // namespace egr