test_sparse_conv_op.py 6.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
from paddle import _C_ops
from paddle.fluid import core
from paddle.fluid.framework import _test_eager_guard


class TestSparseConv(unittest.TestCase):
25

26 27 28
    def test_conv3d(self):
        with _test_eager_guard():
            kernel = [[[[[1], [1], [1]], [[1], [1], [1]], [[1], [1], [1]]]]]
29 30 31
            dense_kernel = paddle.to_tensor(kernel,
                                            dtype='float32',
                                            stop_gradient=False)
32 33 34 35
            dense_kernel = paddle.reshape(dense_kernel, [1, 3, 3, 1, 1])
            paddings = [0, 0, 0]
            strides = [1, 1, 1]
            dilations = [1, 1, 1]
36
            bias = [1]
37 38 39 40 41 42

            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [1, 2, 3, 4]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
43
            correct_out_values = [[5], [11]]
44 45
            sparse_input = core.eager.sparse_coo_tensor(indices, values,
                                                        dense_shape, False)
46
            out = paddle.incubate.sparse.nn.functional.conv3d(
47 48
                sparse_input,
                dense_kernel,
49
                bias=paddle.to_tensor(bias, dtype='float32'),
50 51 52 53 54
                stride=strides,
                padding=paddings,
                dilation=dilations,
                groups=1,
                data_format="NDHWC")
55
            out.backward(out)
56
            assert np.array_equal(correct_out_values, out.values().numpy())
57

58 59 60 61 62 63 64
    def test_subm_conv3d(self):
        with _test_eager_guard():
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
65
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
66 67
                indices, values, dense_shape, stop_gradient=True)
            weight = paddle.randn((1, 3, 3, 1, 1), dtype='float32')
68 69
            y = paddle.incubate.sparse.nn.functional.subm_conv3d(
                sparse_x, weight)
70 71 72 73 74 75 76 77 78 79 80 81 82
            assert np.array_equal(sparse_x.indices().numpy(),
                                  y.indices().numpy())

    def test_Conv3D(self):
        with _test_eager_guard():
            #(4, non_zero_num), 4-D:(N, D, H, W)
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            #(non_zero_num, C)
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
            correct_out_values = [[4], [10]]
83 84
            sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape, False)
85

86
            sparse_conv3d = paddle.incubate.sparse.nn.Conv3D(
87 88 89 90 91
                1, 1, (1, 3, 3), data_format='NDHWC')
            sparse_out = sparse_conv3d(sparse_input)
            #test errors
            with self.assertRaises(ValueError):
                #Currently, only support data_format='NDHWC'
92
                conv3d = paddle.incubate.sparse.nn.SubmConv3D(
93 94 95 96 97 98 99 100 101 102
                    1, 1, (1, 3, 3), data_format='NCDHW')

    def test_SubmConv3D(self):
        with _test_eager_guard():
            indices = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 1, 2], [1, 3, 2, 3]]
            values = [[1], [2], [3], [4]]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
            dense_shape = [1, 1, 3, 4, 1]
            correct_out_values = [[4], [10]]
103 104
            sparse_input = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape, False)
105

106
            subm_conv3d = paddle.incubate.sparse.nn.SubmConv3D(
107 108 109 110 111 112 113
                1, 1, (1, 3, 3), data_format='NDHWC')
            # test extra_repr
            print(subm_conv3d.extra_repr())

            sparse_out = subm_conv3d(sparse_input)
            # the output shape of subm_conv is same as input shape
            assert np.array_equal(indices, sparse_out.indices().numpy())
114

115 116 117
            #test errors
            with self.assertRaises(ValueError):
                #Currently, only support data_format='NDHWC'
118
                conv3d = paddle.incubate.sparse.nn.SubmConv3D(
119
                    1, 1, (1, 3, 3), data_format='NCDHW')
Z
zhangkaihuo 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

    def test_Conv3D_bias(self):
        with _test_eager_guard():
            paddle.seed(0)
            shape = [1, 4, 4, 4, 3]
            x = paddle.randn(shape)
            sp_x = x.to_sparse_coo(4)
            conv3d = paddle.nn.Conv3D(3, 2, 3, data_format='NDHWC')

            sp_conv3d = paddle.incubate.sparse.nn.Conv3D(3,
                                                         2,
                                                         3,
                                                         data_format='NDHWC')
            sp_conv3d.weight.set_value(
                paddle.to_tensor(conv3d.weight.numpy().transpose(2, 3, 4, 1,
                                                                 0)))
            sp_conv3d.bias.set_value(paddle.to_tensor(conv3d.bias.numpy()))

            x.stop_gradient = False
            out = conv3d(x)
            loss = out.mean()
            loss.backward()

            sp_x.stop_gradient = False
            sp_out = sp_conv3d(sp_x)
            dense_out = sp_out.to_dense()
            sp_loss = dense_out.mean()
            sp_loss.backward()
            assert np.allclose(out.numpy(),
                               dense_out.numpy(),
                               atol=1e-3,
                               rtol=1e-3)
            assert np.allclose(conv3d.weight.grad.numpy().transpose(
                2, 3, 4, 1, 0),
                               sp_conv3d.weight.grad.numpy(),
                               atol=1e-3,
                               rtol=1e-3)
            assert np.allclose(conv3d.bias.grad.numpy(),
                               sp_conv3d.bias.grad.numpy(),
                               atol=1e-5,
                               rtol=1e-5)